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a b s t r a c t 

Recent improvements in biomedical image analysis using deep learning based neural networks could be 

exploited to enhance the performance of Computer Aided Diagnosis (CAD) systems. Considering the im- 

portance of breast cancer worldwide and the promising results reported by deep learning based methods 

in breast imaging, an overview of the recent state-of-the-art deep learning based CAD systems devel- 

oped for mammography and breast histopathology images is presented. In this study, the relationship 

between mammography and histopathology phenotypes is described, which takes biological aspects into 

account. We propose a computer based breast cancer modelling approach: the Mammography–Histology–

Phenotype–Linking–Model, which develops a mapping of features/phenotypes between mammographic 

abnormalities and their histopathological representation. Challenges are discussed along with the poten- 

tial contribution of such a system to clinical decision making and treatment management. 

Crown Copyright © 2018 Published by Elsevier B.V. All rights reserved. 

1

1

 

(  

a  

w  

a  

f  

a  

m  

m  

c  

c  

B  

(

n

l  

m

 

a  

t  

d  

p  

n  

t  

o  

a  

p  

i  

c  

c  

c  

h

1

. Introduction 

.1. Breast cancer 

Breast cancer is the most frequently diagnosed cancer

 National-Health-Service, 2016; American-Cancer-Society, 2016 )

nd accounts for 25.2% of the total cancer related deaths among

omen followed by colorectal (9.2%), lung (8.7%), cervix (7.9%),

nd stomach cancers (4.8%) according to the International Agency

or Research on Cancer, WHO 

1 ( Stewart and Kleihues, 2014 ). The

ssessment process for breast screening follows a triple assess-

ent model: appropriate imaging (i.e. mammography as a pri-

ary imaging modality for lesion visualisation and finding early

hanges in breast tissue) plus clinical assessment and, where indi-

ated, needle biopsy (i.e. H&E 2 stained histology) ( Breast-Cancer-

iopsy, 2016 ). Typical examples of mammographic and H&E histo-
∗ Corresponding author. 
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E. Denton), y.rampun@ulster.ac.uk (A. Rampun), kate.honnor@nnuh.nhs.uk (K. Hon- 
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1 World Health Organisation. 
2 Hematoxylin and Eosin. 
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ogical images of breast tissue, as the two commonly used imaging

odalities, are shown in Fig. 1 and are the focus of this paper. 

Among the women who undergo mammographic screening,

bout 10% are recalled for additional evaluation. Among these, 8

o 10% will have suspicious abnormal findings which warrant un-

ergoing breast biopsy ( Neal et al., 2010 ). In the United States, ap-

roximately 15-30% referred for biopsy are found to have malig-

ant abnormalities and in European trials, this ranges from 30%

o 75% ( Kopans, 1992 ). Although effective, this process is a trade-

ff between sensitivity (84%) and specificity (91%) which leads to

 number of unnecessary biopsies ( Elmore et al., 2009 ). The im-

act of unnecessary biopsy and the downstream diagnostic burden

ncludes increased anxiety, morbidity and stress for the women

oncerned and increased health care costs. Nevertheless, biopsy is

urrently considered the only way to confirm the presence of can-

er ( Elmore et al., 2009 ). Therefore, there is a clear need to develop

 specific discrimination model or criteria, like the “Stavros Cri-

eria” in ultrasound, which determines whether ultrasound could

elp accurately distinguish benign solid breast nodules from inde-

erminate or malignant nodules and whether this distinction could

e specific enough to reduce the need for biopsy ( Stavros et al.,

995 ). In mammography, an equivalent model or criteria could in-

icate benign abnormalities and reduce the need for further biop-
ies. 

https://doi.org/10.1016/j.media.2018.03.006
http://www.ScienceDirect.com
http://www.elsevier.com/locate/media
http://crossmark.crossref.org/dialog/?doi=10.1016/j.media.2018.03.006&domain=pdf
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Fig. 1. Two breast imaging modalities: (a) mammography images from the INBreast 

dataset ( Moreira et al., 2012 ), Craniocaudal (CC) and Mediolateral Oblique (MLO) 

views (left - right sides) shown in the first and the second row respectively; (b) 

breast histology images from the MITOS-ATYPIA-14 (2016) dataset, showing from 

top to bottom: 10 HPF, 20 HPF and 40 HPF (HPF stands for high power field which 

indicates magnified areas). 
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5 Sparse AutoEncoders. 
6 Deep belief networks. 
7 Restricted Boltzmann Machines. 
8 Convolutional Neural Networks. 
9 Recurrent Neural Networks. 

10 
1.2. Conventional CAD systems 

In order to assist radiologists’ interpretation, Computer Aided

Diagnosis (CAD) systems and quantitative image analysis (QIA)

techniques have been developed as an alternative to double read-

ing, improving clinicians’ accuracy and patient outcome. These sys-

tems are aimed at improved identification of subtle suspicious

masses, calcifications, micro-calcifications and other abnormalities

in mammograms ( Oliver et al., 2010; He et al., 2015 ). Meanwhile,

histological CAD systems, provide another perspective on develop-

ing breast cancer models such as the identification of tumour re-

gions, mitotic activity, nuclear atypia score, the epithelium-stroma

and the tubule formation score along with identifying subtypes of

breast cancer like IDC 

3 or ILC 

4 ( Veta et al., 2014; Gurcan et al.,

2009 ). An overview of machine learning based image analysis as-

pects used in histopathology and mammography CAD systems is

provided in Fig. 2 . Using conventional machine learning methods,

various hand-designed descriptors (i.e. morphological, topological

and textural features) based on prior knowledge and expert guid-

ance have been developed for these CAD systems. Previous pub-

lications have described and compared such approaches for au-

tomatic detection and segmentation of abnormalities in mammo-

graphic images ( Oliver et al., 2010; 2006; Giger et al., 2013; Boyer

et al., 2009 ). When dealing with breast histology; inherent com-

plexities are modelled via different algorithms to achieve specific

tasks ( Kowal et al., 2013; Irshad et al., 2014; Dundar et al., 2011;

Kothari et al., 2013; Veillard et al., 2013 ). These models and ap-

proaches have been evaluated on different breast databases includ-

ing digital/digitised mammography and histology images. 

The most significant weakness of conventional machine learn-

ing methods is the hand-engineered feature extraction step, which

employs a combination of heuristic and mathematical descriptors.

Subsequently, the extracted features are introduced into different
3 Invasive ductal carcinoma. 
4 Invasive lobular carcinoma. 
lassifiers to be categorised into the desired classes as expressed

n Fig. 2 . This feature extraction step makes the learning algorithm

ore cumbersome since it mostly depends on the features ex-

racted from the data and requires effort and sufficient interpret-

ng knowledge due to the various geometrical and morphological

tructures. Reproducing results is not always easily achieved and

he generic discrimination ability of the features used needs inves-

igation. 

.3. Towards, deep learning based CAD systems 

The benefits of conventional mammographic and histologic CAD

ystems in clinical practice have not been fully determined. There

as been significant discussion on whether CAD is an effective tool

t the current level of performance ( Fenton et al., 2011; Giger,

014 ). Still, more creative and predictive models need to be de-

igned to improve the performance metrics, including accuracy,

ensitivity, specificity, precision and recall rate to improve upon

he current state-of-the art. A crucial step towards a new gen-

ration of machine learning approaches is enabling computers to

earn the features as data representatives. These are expressed as

ow-level features such as margin and edge; middle-level features

uch as edge junctions and high level object parts ( Zeiler et al.,

011 ). Deep learning approaches - termed one of the significant

reakthrough technologies of recent years by the MIT Technol-

gy Review ( MIT-Technology-Review, 2017 )- has made headlines

n producing semantic information due to its nature of adaptive

earning from input data. Various deep learning structures have

een developed for both supervised approaches (algorithms that

nfer a function from input data with labelled responses) and un-

upervised approaches (algorithms that draw inferences from in-

ut data without labelled responses). SAE 5 ( Ng, 2011 ), DBN 

6 and

BM 

7 ( Salakhutdinov and Hinton, 2009 ) are among popular ar-

hitectures developed for unsupervised approaches. CNN 

8 ( LeCun

t al., 2010; 1998 ) and RNN 

9 ( Medsker and Jain, 1999 ) have be-

ome the technique of choice for supervised approaches. In re-

ent years, a noticeable shift from conventional machine learn-

ng methods to deep learning based methods is seen in a wide

ariety of real world, especially medical, applications and several

eview papers have been published ( Schmidhuber, 2015; LeCun

t al., 2015; Litjens et al., 2017 ). Several open crowd-sourced al-

orithmic analysis competitions have been announced to motivate

he development of better techniques for cancer prognosis, detec-

ion, risk stratification, disease outcome prediction and survival.

ecently held breast cancer mammography related competitions

ave been the Digital-Mammography-DREAM-Challenge (2017) and

K-Breast-Cancer (2016) . Some recent breast histopathology com-

etitions include: ICPR2012 (2017) 10 , AMIDA13 (2017) 11 , MITOS-

TYPIA-14 (2016) , CAMELYON16 (2016) , CAMELYON17 (2017) 12 and

UPAC16 (2016) 13 . These competitions have influenced the evalua-

ion of different methods to become more transparent and easier

o compare. In most of these challenges, deep learning based ap-

roaches have shown the most promising performance. 

In AI 14 technology, deep learning methods have multiple lev-

ls of representation learning which use raw data and dis-

over the essential representations for detection or classification
International conference on pattern recognition. 
11 Assessment of mitosis detection algorithms. 
12 Cancer metastasis detection in lymph node. 
13 Tumor proliferation assessment challenge. 
14 Artificial intelligence. 
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Fig. 2. Image analysis procedures for mammography and histopathology image data. 
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 LeCun et al., 2015 ). These inherent representations and patterns

re obtained through a hierarchical framework which is able to

ut features extracted from a low level (starting with raw data)

nd high level abstracts together using a non-linear approach. Such

etworks are able to improve themselves according to the in-

ut content variation and optimise the relationship between in-

uts and outputs via an iterative training process ( Bengio, 2009 ).

t the same time as the deep learning concepts were devel-

ped, a step-change in processing power through high perfor-

ance GPUs 15 and open source frameworks/libraries developed on

UDA 

16 ( CUDA, 2017 ) or OpenCL 17 ( OpenCL, 2017 ) platforms have

ade significant progress for the implementation of deep learn-

ng based methods. These open source frameworks and libraries

rovide the chance for optimised implementation of convolutions

nd other related functions. In addition, they facilitate the ability

o perform a high number of computations at a relatively low costs

hrough their massive parallel architectures. 

.4. Structure of the paper 

This paper presents an overview of different deep learning

ased approaches used for mammography and breast histology and

roposes a bridge between these two fields employing deep learn-

ng concepts. We have focused on mammography, since this is the

ost common modality used in breast screening, and H&E stained

istology, since it is considered as the gold standard for final deci-

ion making. 

The main aims of this paper are: 

1. In Section 2 , deep learning based models are introduced and

their fundamental structures summarised. 

2. Recent deep learning based approaches for mammographic

and histopathologic image analysis are reviewed (covered in
15 Graphics processing units. 
16 Compute unified device architecture. 
17 Open computing language. 

a  

t

Sections 3 and 4 , respectively). Details of the models (e.g.

datasets, architecture, etc.) are provided in separate tables. 

3. Exploring the link between mammography and histology phe-

notypes from a biological point of view is reviewed in

Section 5 . 

4. The future of deep learning in constructing a model link-

ing mammographic and histologic features and phenotypes

called “Mammography–Histology–Phenotype–Linking–Model”

( ML M< −>H ) is covered in Section 6 . 

5. Potential challenges to be considered in the development of

ML M< −>H are also discussed in Section 6 . 

.4.1. Paper selection process 

When selecting the papers, popular review papers ( Veta et al.,

014; Gurcan et al., 2009; Oliver et al., 2010; Rangayyan et al.,

0 07; Doi, 20 07; He et al., 2015; Litjens et al., 2017 ) were consid-

red. Other papers citing them and publishing work on mammog-

aphy or breast histology were also reviewed. Papers published by

articipants in breast cancer challenges were selected too. Google

cholar was searched using keywords: “breast cancer, mammogra-

hy, histopathology, CAD systems, deep learning, Convolutional Neural

etwork (CNN), linking map, phenotype ” and those related to breast

ancer and deep learning were included in this review. 

. Deep Neural Networks 

.1. General architecture of deep neural networks 

Various deep architectures have been derived from traditional

eed-forward ANN. 18 An ANN consists of a cascade of trainable

ulti-stage layers inspired by the organisation of the animal visual

ortex ( LeCun et al., 2010 ). There are sets of arrays called feature

aps as the input and output of each layer. Each feature map in

 specific layer represents particular features extracted at the loca-

ions of the associated input. 
18 Artificial Neural Network. 
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Commonly used layers in deep learning based networks are: 

2.1.1. Input layer 

This loads input to feed the convolutional layers. Some trans-

formations such as mean-subtraction, feature-scaling and effective

data augmentation can be incorporated ( Hamidinekoo et al., 2017 ).

2.1.2. Convolutional layer 

This tends to include three stages of operational

units ( LeCun et al., 2010 ): 

• Convolutional filters: these compute the convolution result of

the input feature map with trainable 2D discrete convolution

filters and bias parameters. Each filter bank detects a particular

feature at each location on the input map ( LeCun et al., 2010;

Schmidhuber, 2015 ). 

• Pooling: this performs down-sampling for the spatial dimension

of the input. This results in a reduced-resolution output feature

map which is robust to small variations in the location of fea-

tures in the previous layer. Additionally, it merges semantically

similar features into one. There are a number of variations for

pooling (i.e. maximum, average) ( Krizhevsky and Hinton, 2009 ).

• Activation or non-linearity function: this is a non-linear

element-wise operator that simulates excitability of neurons.

Among various activation functions in deep learning, the Recti-

fied Linear Unit (ReLU) has been shown to be efficient for image

processing applications ( Glorot et al., 2011; Dahl et al., 2013 ). 

2.1.3. Normalisation layer 

This can be implemented at each spatial location across all fea-

ture maps of the same layer in order to acquire an improved de-

scription of the input. This way, non-uniformity of the scene il-

lumination can be reduced which leads to better convergence by

decorrelating the input dimensions ( Dahl et al., 2013 ). 

2.1.4. Dropout regularisation layer 

This can reduce over-fitting of the network and result in learn-

ing more robust features. The key idea is to randomly drop units

along with the respective connections from the neural network

during the training process to avoid too much co-adaptation of the

units ( Srivastava et al., 2014 ). 

2.1.5. Inner-product layers or fully connected layers 

These treat their input as a simple vector and produce an out-

put in the form of a single vector. In classification tasks, the last

layers are sometimes fully-connected layers that are followed by

logarithmic loss to be minimised. The exact merit of fully con-

nected layers is still an open research question, but its effect in

improving the performance has been reported ( Krizhevsky et al.,

2012 ). 

Constructing the architecture using these elements, a signal is

propagated through active neurons from layer to layer. This signal

is a linear combination of the input, learned weights and biases

treated under a non-linearity function as: 

signal = F nonlinear (weights T ∗ input + bias ) (1)

Accordingly, in the forward direction the loss function (specifi-

cally defined for a task) is calculated. Optimisation of the calcu-

lated error is obtained using a form of stochastic gradient de-

scent ( LeCun et al., 1998 ). Hence, coefficients of all filters in dis-

tinct layers are calculated and updated simultaneously during the

learning process with the back-propagation method ( LeCun et al.,

2012 ). Training is an iterative process involving multiple passes

of the input data through the network until the model con-

verges ( LeCun et al., 2015; Schmidhuber, 2015 ). 

Two of the most important types are Convolutional Neu-

ral Networks and AutoEncoders, which are described in

Sections 2.2 and 2.3 . 
.2. Convolutional Neural Networks (CNNs) 

CNNs are the most successful type of deep learning models, es-

ecially for supervised learning applied to image based classifica-

ion work. Litjens et al. (2017) have published a comprehensive

eview on different image processing applications accomplished

y CNNs. Like regular ANNs, CNNs are made up of several layers

tacked on top of each other. However, unlike a regular neural net-

ork, the layers of a CNN have width, height and depth so that

hey are controllable by their depth and breath variations which

nables them to share weights ( Simonyan and Zisserman, 2014 ). A

NN can be trained by feeding it a suitable input. It is then able to

ompute parameters layer by layer and produce a final output. The

bjective of training is to minimise the difference between the pre-

icted output and the actual output of the network. This error then

ows backwards through the net by a back-propagation procedure

nd updates the parameter values. A typical CNN architecture is

hown in Fig. 3 . 

.3. AutoEncoder 

An AutoEncoder (AE) is a form of ANN, developed for unsuper-

ised learning models ( Bengio, 2009 ). An AE is able to learn gen-

rative representations from image data, typically with the pur-

ose of reconstructing the input on the output layer by reducing

he dimensionality space through the hidden layers. AEs have been

idely used for segmentation and detection tasks in breast im-

ge analysis while CNNs are mostly used for the task of predict-

ng a target value (i.e. classification). Architecturally, AEs are feed-

orward, non-recurrent neural networks that consist of two parts:

he encoder and the decoder. A schematic architecture of an AE is

hown in Fig. 4 . The objective of training is to minimise the recon-

truction error which in the simplest form can be expressed as: 

oss (I, O ) = || I − O || 2 
= || I − F De (W 

T 
De ∗ (F En (W 

T 
En ∗ I + B En )) + B De ) ‖| 2 (2)

I: Input image 

O: Output image 

F En : Encoder element wise activation function 

F De : Decoder element wise activation function 

W En : Weight in Encoder 

W De : Weight in Decoder 

B En : Bias in Encoder 

B De : Bias in Decoder 

.4. Developed models 

CNNs and AEs have several general advantages compared to

onventional feed-forward neural networks such as: no depen-

ency on designing hand-crafted features; reduced pre-processing

nalysis on input data; calculation of fewer connections and pa-

ameters; ability to pool similar features at the same location and

earby locations due to the use of shared weights; and transla-

ion invariance ( Donahue et al., 2014 ). Moreover, the saturation is-

ue and vanishing or exploding gradient of a layer, which are seri-

us concerns for neural networks ( Schmidhuber, 2015 ), can be ad-

ressed with careful choice of activation functions, careful weight

nitialisation and small learning rates during optimisation. Detailed

escription of these technical aspects are covered by Nair and Hin-

on (2010) . For more detailed information about the mathematical

oncept of deep learning based architectures, the reader is sug-

ested to consult LeCun et al. (2010) . 

The success or failure of a model depends on the afore-

entioned modifiable compartments of the learning system.

ections 3 and 4 will focus on the CNNs and AEs applied in mam-

ography and histology image processing applications and how
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Fig. 3. A typical Convolutional Neural Network architecture. 

Fig. 4. Schematic architecture of an AutoEncoder (AE). 
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he proposed models have improved the state-of-the-art results for

AD systems in these two fields. There are several “standard” deep

earning networks throughout this paper which are used in the de-

eloped models described in the later sections: 

CifarNet ( Krizhevsky and Hinton, 2009 ) has three convolution

ayers, three pooling layers, and one fully-connected layer. This

NN architecture has about 0.15 million free parameters. 

AlexNet ( Krizhevsky et al., 2012 ) has five convolution layers,

hree pooling layers, and two fully-connected layers with approx-

mately 61 million free parameters. It has halved the error rate in

bject recognition competitions and facilitated the rapid adoption

f deep learning. 

GoogLeNet proposed by Szegedy et al. (2015) , is significantly

ore complex in structure and depth and introduced an “Incep-

ion” module that consisted of six convolution layers and one pool-

ng layer which is responsible for concatenation of filters with

ifferent sizes and dimensions into a single new filter. Overall,

oogLeNet has two convolution layers, two pooling layers, and

ine Inception layers leading to nearly 5 million free parameters. 
VGGNet ( Simonyan and Zisserman, 2014 ) showed the effect of

he network depth on performance. It described 2 best versions:

ontaining 16 and 19 convolution/fully-connected layers perform-

ng on 3 × 3 filter sizes with approximately 138 million free pa-

ameters in VGGNet 16. 

.5. Common challenges and proposed strategies in deep learning 

In recent years, deep learning based methods have been con-

idered the preferred approach for many medical imaging ap-

lications. However, in order to integrate them into application

ipelines, some considerations should be taken into account. Com-

arison of various algorithmic methods is difficult since each re-

earch team has reported their results using their own dataset

nd evaluation metrics ( Gurcan et al., 2009 ). To address the is-

ue of such variation, some data has been made publicly available.

or example, in the Whole Slide Imaging Repository website, 19 

istopathology images and information for different organs is ac-
19 https://digitalpathologyassociation.org/whole- slide- imaging- repository . 

https://digitalpathologyassociation.org/whole-slide-imaging-repository
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cessible. Of critical concern for supervised learning is the amount

of annotated data available. To address this, some image data has

been made publicly available in terms of competitions but still

labelling them specifically is time-consuming, tedious and some-

times costly. The annotations should be done in a structured for-

mat to be usable by the larger community. A list of recent large

datasets in mammography and breast histopathology are provided

in Tables 1 and 2 . 

There are currently three major approaches for successfully em-

ploying supervised deep networks, which also address the issue of

data availability, (i.e. for image classification via CNNs): (i) train-

ing a network from scratch, (ii) using off-the-shelf pre-trained

network features and (iii) using unsupervised networks and pre-

training with supervised fine-tuning ( Shin et al., 2016; Goodfellow

et al., 2016 ). Based on the reported results ( Tajbakhsh et al., 2016 ),

CNNs are difficult to train from scratch for most medical images

due to the small data sample sizes, variance in abnormality ap-

pearances and lack of rare or special cases. Transfer learning and

fine-tuning in medical image analysis are two effective methods in

which a network (i.e. a CNN model) is pre-trained on a natural im-

age dataset or a different medical domain and then fine-tuned on

the desired medical images. Thanks to some open source frame-

works, like Caffe ( Jia et al., 2014 ), these pre-trained networks can

simply be downloaded and directly applied to any medical image

analysis. 

Another solution to collecting a larger number of annotated im-

age data is crowdsourcing ( Albarqouni et al., 2016 ). This technique

allows for combining radiologists’ or histopathologists’ knowledge

with non-experts to enable learning inputs from crowds as part

of the network learning process. While the unlabelled data can

never replace labelled data, using unlabelled data is also a sup-

plement to the annotated data. Artificial data augmentation is an-

other solution widely used for increasing the number of train-

ing cases ( Hamidinekoo et al., 2017 ). These issues are further ad-

dressed in the models covered in Sections 3 and 4 . 

3. Deep learning in mammographic image processing 

3.1. Problem statement 

Mammograms reflect density variations in breast tissue com-

position due to different X-ray attenuation in breast tissue. Ep-

ithelium and stroma attenuate x-rays more than fat and thus

appear radiopaque on mammograms while fat appears radiolu-

cent ( Tabár and Dean, 2005 ). Several studies have confirmed

the relationship between breast cancer risk and mammographic

parenchymal (texture) patterns assessed by percent mammo-

graphic density ( Gastounioti et al., 2016 ) (besides age, gender, gene

mutations and family history factors). Breast cancer can appear in

mammograms as: masses, architectural distortion and microcalci-

fications; and separate or combinational CAD systems have been

developed for these types of abnormalities. The size, distribution,

form, shape and density of these abnormalities are considered as

clues in diagnosing their potentially cancerous nature ( Tabár and

Dean, 2005 ). Example abnormalities accompanied by their annota-

tions by expert radiologists are shown in Fig. 5 . 

Radiologists also use a set of intuitive tissue patterns to char-

acterise the appearance of each mammogram manually and esti-

mate breast cancer risk using specific metrics. The reader is re-

ferred to Wolfe (1976) ; Tabár and Dean (2005) ; Boyd et al. (2010) ;

D’Orsi (2013) ; Muhimmah et al. (2006) for more detailed infor-

mation about various breast density classification systems. Among

these systems, BIRADS 20 has become popular to standardise the
20 Breast imaging reporting and data system. T
a

b
le
 
1
 

P
o

p
u

la
r 

D
a

ta
b

a

M
IA

S
 
(

D
D

S
M
 

B
a

n
co

W

( M
a

t

S
ch

ia

IN
B

re
a

2
0

1
2

B
C

D
R

-F

2
0

1
2

B
C

D
R

-D

B
C

D

2
0

1
2

T
C

G
A
 
(

T
C

G
A

2
0

1
3



A
.
 H

a
m

id
in

ek
o

o
 et

 a
l.
 /
 M

ed
ica

l
 Im

a
g

e
 A

n
a

ly
sis

 4
7
 (2

0
18

)
 4

5
–

6
7
 

5
1
 

Table 2 

Popular challenges with provided databases in the field of breast histology. 

Database Number of 

cases 

Image format Magnification Slide scanner Resolution (bits/ pixel) Image 

mode 

Abnormality Provided 

assessment 

Annotation Origin of data Year 

ICPR2012 (2017) 5 .bmp x40 Aperio ScanScope 

XT 

2084 × 2084 24bit RGB mitotic nuclei mitotic locations centroids of around 

300 mitosis and 

mask in .jpg format 

Hamamatsu 2.0HT 2252 × 2250 24bit RGB France 2012 

Multispectral 

microscope 

2767 × 2767 gray level 

AMIDA13 (2017) 23 .TIFF, .JPEG x40 Aperio ScanScope 

XT 

20 0 0 × 20 0 0 8bit RGB mitotic nuclei mitotic locations centroids of 1157 

mitosis and mask 

in .TIFF format 

The Netherlands 2013 

MITOS-ATYPIA-14 

(2016) 

32 .TIFF x10, x20, x40 Aperio ScanScope 

XT 

1539 × 1376 RGB mitosis and 

nuclear 

atypia 

list of mitosis; list 

of similar objects 

to mitosis; 

nuclear atypia 

score; mitosis 

centroids of mitosis 

and mask in .jpg 

format; confidence 

degree in .csv file 

France 2014 

Hamamatsu 2.0HT 1663 × 1485 and non-mitosis 

location; 

agreement 

between 

pathologists 

CAMELYON16 

(2016) 

400 multi-resolution 

pyramid structure 

x40, x10, x1 Pannoramic 250 

Flash II 

pixel size: 

0.243 μ m × 0.243 μ m 

RGB metastasis cancerous regions contours of cancer 

locations 

The Netherlands 2016 

Hamamatsu XR 

C120 0 0 

pixel size: 

0.226 μ m × 0.226 μ m 

in .xml files and WSI 

masks 

TUPAC16 (2016) 500 + axilary 

datasets 

multi-resolution 

pyramid structure 

x40 Aperio XT highest resolution: 

50k × 50k 

RGB tumour 

proliferation 

proliferation score; 

ROC annotation 

ROC coordinates with 

the scores in .csv 

files 

The Netherlands 2016 

CAMELYON17 

(2017) 

200 .TIFF – – – – metastasis micro and macro 

metastasis; PN 

stage label; ROC 

annotation 

contours of cancer 

locations in .xml 

files and WSI 

masks 

The Netherlands 2016 
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Fig. 5. (a): Mammograms with the annotated mass abnormalities selected from 

BCDR-F03 database (masses or lumps are the most common symptom of breast 

cancer); (b): mammograms with the annotated calcification selected from BCDR- 

F02 database (small deposits of calcium in the breast tissue, called breast calcifi- 

cations, are common and often associated with benign cases); (c): mammograms 

with the annotated microcalcifications selected from BCDR-F02 database (shown as 

much smaller white dots on a mammogram, called clusters of micro-calcifications 

and are not quite as common and can be a cause of concern). The green boundary 

represents benign biopsy proven lesions and the red boundary represents malignant 

biopsy proven lesions. 

Table 3 

Main breast density categories. 

Density percent BIRADS density class Tissue appearance 

[0%–25%] I Predominantly fatty 

[25%–50%] II Scattered fibro-glandular densities 

[50%–75%] III Heterogeneously dense 

[more than 75%] IV Dense 
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22 Denoising AutoEncoder. 
23 Convolutional Sparse AutoEncoder. 
24 Adaptive deconvolutional network. 
25 Spatial pyramid matching. 
26 Support vector machine. 
27 Histogram of oriented gradients. 
mammography report which covers abnormalities and density and

more details on the latter are described in Table 3 . Each case is

assessed to be: normal (Assessment Category (A.C.) = 1), benign or

probably benign (A.C. = 2 or 3), suspicious abnormality (A.C. = 4)

or malignant (A.C. = 5). The building of systems which can effec-

tively provide automatic detection, segmentation and classification

of such lesions based on deep learning methods has become one

of the challenging areas in mammographic CAD systems. 

3.2. Mass analysis 

The first implementation of deep learning networks in

mammographic mass detection/classification was done by

Sahiner et al. (1996) . The CNN’s input images were obtained

from manually extracted RoIs 21 by radiologists. With these RoIs,

the training data was prepared using two techniques: (i) employ-

ing averaging and sub-sampling, (ii) employing texture feature

extraction applied to small subregions inside the RoI. They studied

the effects of CNN architecture and texture feature parameters

on classification of different mammograms and indicated that the

input images are more critical than the CNN architecture. However,
21 Regions of interest. 
his was before the use of GPUs and improvement of ANNs and

o implementing such CNN was described as computationally

ntensive and tedious with poor adaptability and limited results.

owever, later on, inspired by the layer aspect of deep networks

long with parallelisable algorithms and properties of GPUs, ex-

loring CNN applications in mammography became more realistic.

etersen et al. (2012) presented a generic multi-scale DAE 22 using

 sparsifying activation function for breast density segmentation.

hey evaluated their results by comparing it to manual BIRADS

nd Cumulus-like density scoring ( Byng et al., 1994 ). They showed

hat multiple scales are effective for learning rich feature repre-

entations in the segmentation task. Following Petersen’s work,

allenberg et al. (2016) proposed a CSAE 23 network with sparsity

egularisation (both lifetime and population). This architecture ex-

anded the idea of Ranzato et al. (2006) to pixel-wise labelling of

arge scale images which was able to preserve the spatial layout of

he image while avoiding feature overcompleteness. They implied

hat sparse overcomplete representations were cost-efficient and

obust to noise. In a different approach, Jamieson et al. (2012) ex-

lored the use of ADNs 24 proposed by Zeiler et al. (2011) . ADNs are

nsupervised and hierarchical models that use convolution sparse

oding and max pooling for image decomposition. They combined

he SPM 

25 kernel ( Lazebnik et al., 2006 ) on the inferred feature

aps and a linear SVM 

26 classifier. They visualised image relation-

hips according to the learned feature information utilising the

lastic Embedding dimension reduction technique. Various depth

NN networks were also tested by Arevalo et al. (2015, 2016) . They

ompared their best obtained results with two baseline descrip-

ors: HOG 

27 and HGD 

28 and an approach using 17 hand-crafted

eatures. Finally, they reported performance improvement with

he combination of both learned and hand-crafted representations.

onseca et al. (2015) evaluated the performance of the developed

T-L3 CNN, an architecture search procedure technique ( Pinto

t al., 2009 ), on mammograms. The network search space with the

roposed options had 729 candidates and it took about 72 h to

creen them in order to find the top 3 performing architectures. By

btaining the best architecture, they performed automatic feature

xtraction and trained an SVM classifier. Dhungel et al. (2015) pre-

ented a multi-scale 4-DBN that was combined with a GMM 

29 

lassifier for mass candidate generation. These candidates were

ed to a CNN to extract textural and morphological features for

he linear SVM classifier (this combination is known as R-CNN). A

ascade of two RF 30 classifiers was then applied to the feature set

or the inference processes. Performing post processing, regions

ased on a high overlap ratio were merged as the overall results.

ubsequently, Carneiro et al. (2015) fine tuned a CNN pre-trained

ith ImageNet ( Krizhevsky et al., 2012 ) using unregistered mam-

ograms and segmented microcalcification and masses. They

stimated the patient’s risk of developing breast cancer based on

IRADS classification. They concluded that the pre-trained multi-

iew model is superior to the randomly initialised model in terms

f classification since over-fitting of the training data is likely to

e caused by a random initialised model. In the recent paper,

nspired by their previous work, Dhungel et al. (2016) concluded

hat the CNN model with pre-training and RF on features from
28 Histogram of gradient divergence. 
29 Gaussian Mixture Model. 
30 Random Forest. 
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he CNN with pre-training are better than the RF on hand-crafted

eatures and CNN without pre-training. 

As a solution to acquiring sufficient data to train a CNN,

un et al. (2016) hypothesised combining a small amount of

abelled data with abundant resources of unlabelled data. The

cheme consisted of three modules: (i) data weighing (using ex-

onential, Gaussian and Laplacian functions), (ii) feature selection

using PCA 

31 , LDA 

32 and MDS 33 ) and (iii) using their proposed

o-training graph based data labelling. With computed weights,

he unlabelled data was gradually labelled with a graph based

emi-supervised learning method. They implied that their scheme

as less sensitive to initial labelled data compared to schemes

sing the labelled data only, since the additional information

or the training was provided by the unlabelled data. Similarly,

ooi et al. (2016) and Huynh et al. (2016) took advantage of trans-

er learning to extract tumour information from medical images

ia CNNs that were originally pre-trained with non-medical data.

heir two-stage classification procedure included detecting candi-

ates for further scrutiny by applying RF and generating likelihood

mages. These images were then used as seed points for both the

eference system and the CNN. They showed that the addition of

ocation, context information and several manually designed fea-

ures to the network improved the performance. In a similar way,

iao et al. (2016) proposed a scheme in which a CNN was trained

n LSVRC 

34 ( Deng et al., 2009 ) images and fine-tuned on a sub-

et of breast mass images. Then, features of masses were extracted

rom different hierarchical levels of this model, with the help of

hich two linear SVM classifiers were trained for the decision

rocedure. Eventually, in the decision mechanism, the outcomes

rom different classifiers were fused to complete the classifica-

ion. Unlike other studies, Samala et al. (2016a) pre-trained CNN

n mammography samples to identify specific patterns and trans-

erred this to detect masses in tomosynthesis (an advanced 3D ver-

ion of mammography). They reported statistically significant per-

ormance improvement of deep learning based CADs compared to

he feature-based ones. 

Classification can be used directly for detection and segmenta-

ion. Dubrovina et al. (2016) performed tissue classification with

pplication to the segmentation of pectoral muscle, fibroglandular

issue, nipple and the general breast tissue, which includes fatty

issue and skin. They changed classical fully connected layers in a

egular CNN into convolutional layers. In conclusion, they reported

ignificantly faster computation, while preserving the classification

ccuracy. Fotin et al. (2016) detected soft tissue densities from dig-

tal breast tomosynthesis. They compared conventional and deep

earning approaches, reporting better CNN performance. Similarly,

ooi et al. (2017) compared a mammography CAD system relying

n manually designed features and CNN designed features. They

oncluded that: (i) the CNN based CAD systems outperformed the

raditional CAD system; (ii) there was no significant difference be-

ween the model and the radiologists (AUC: 0.85 vs. 0.91); (iii)

dding manually designed features to the CNN could give very

mall improvements. In other work, Lévy and Jain (2016) classi-

ed pre-segmented masses using different networks from shallow

o deep CNNs along with a transfer learning method. They inves-

igated the effect of data augmentation and data context in their

ork, concluding that double the bounding box of the abnormality

s effective in binary classification of masses. 
31 Principal component analysis. 
32 Linear discriminant analysis. 
33 Multidimensional Scaling. 
34 Large scale visual recognition competition. 

r  

t  

t  

c  

e  

t  

t  

s  
.3. Microcalcification analysis 

Alongside the CAD models covered already, additional research

ith regard to microcalcifications, as another major abnormality

n mammograms, has been produced. CAD systems are better at

etecting and classifying microcalcification than other mammo-

raphic abnormalities ( Cheng et al., 2003 ) as the density of cal-

ium makes detection possible using thresholding. This is not use-

ul for most masses and asymmetries where the density is similar

o glandular breast tissue. 

The first application of CNN to the detection of microcalci-

cation clusters was performed by Chan et al. (1995) . Clusters

f micro-calcifications were detected in three main steps: find-

ng SNR-enhanced image by applying enhancement and suppres-

ion filters, histogram determination, obtaining signal characteris-

ics and excluding potential signals by thresholding. Subsequently,

hey trained and investigated the effectiveness of a CNN in detect-

ng and discriminating false signals from true microcalcifications.

owever, the number of cases they used was limited but they were

ble to significantly reduce the number of false positive detections.

ecently, Wang et al. (2016b) , employed a stacked denoising AE to

etrospectively analyse microcalcifications with or without masses

n mammograms. Microcalcification and mass data was extracted

y image segmentation using 41 statistical and textural measure-

ents following the classification. In their work, features were fed

nto the comparative classifiers rather than the raw images. Its per-

ormance and accuracy in classifying and discriminating breast le-

ions were compared with SVM, K-nearest neighbour and linear

ecomposition analysis methods. They reported that the learning

ower can be enhanced by a combinatorial approach and deep

earning based methods are superior to standard methods for the

iscrimination of microcalcifications. Samala et al. (2016b) used

 grid search method to select an optimal CNN architecture for

ifferentiating microcalcification candidates detected during the 

re-screening stage. Various filters, filter kernel sizes and gradi-

nt computation parameters in the convolution layers were tested

o gain the parameter space of 216 combinations. They reported

ignificant improvement on their designed CNN architectures for

etection of microcalcifications. Classification of clustered breast

icrocalcifications into benign and malignant categories was per-

ormed by Bekker et al. (2016) which was based on two mam-

ography view-level decisions, allocating separate neural networks

or each view. These two view-level soft decisions were then non-

inearly combined into a global decision by a single-neuron layer. 

.4. Summary 

In summary, introducing deep learning strategies into mammo-

raphic analysis has expanded ideas to modify the training process

or a wide range of mammographic applications. Detailed informa-

ion about the implementation of deep learning based methods,

overed in this section, is provided in Table 4 . Most of these mod-

ls have tested different network depths and input sizes to address

arious issues and the majority of models reported improvements

ver existing state-of-the-art results. An overview of general issues

elated to deep learning methods in biomedical image analysis is

rovided by Greenspan et al. (2016) and Litjens et al. (2017) . For

pecific case of mammographic analysis, good results are directly

elated to the correctness of the training data, but the annota-

ions provided by the radiologists are prone to subjectivity. Anno-

ation agreement/disagreement has not yet been included in the

urrently available datasets which would be helpful for managing

rrors. In addition, the developed methods are not able to iden-

ify the most suitable training exemplars that contain rich informa-

ion for a specific task. The developed methods are sensitive to the

ize of the abnormalities. Nevertheless, to account for morphologi-
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Table 4 

Detailed information for deep learning based methods used in mammography; ∗conv: convolution, ∗fc: fully connected; ∗FFDM: full field digital mammography; ∗DBT: digital breast tomosynthesis. 

Reference Task Data Number of data Input size DL architecture Train time Evaluation 

Sahiner et al. (1996) mass and normal tissue 

classification 

168 mammograms from 

Department of Radiology, 

University of Michigan, USA 

train: 84 mammograms; 

test:84 mammograms 

16 × 16 and 

32 × 32 

CNN: 2 conv + 1 fc - AUC: 0.87 

Petersen et al. (2012) breast density scoring 85 mammograms from a 

placebo-controlled trial 

train: 60,0 0 0 patches 28 × 28 denoising AE: 2 hidden 

layers with 1,0 0 0 

neurons each 

- AUC: 0.68 

Jamieson et al. (2012) mass classification 739 image RoIs from University 

of Chicago Medical Center, 

USA 

– 140 × 140 4-layer ADN + code book + 

dictionary histogram 

image + linear-SVM 

classifier 

- AUC: 0.71 

Fonseca et al. (2015) density classification digital images (CC view) from 

1,157 subjects at medical 

centres in Lima, Peru 

– 200 × 200 CNN: 3 conv + SVM 

classifier 

- AUC: 0.73 

Dhungel et al. (2015) mass classification 410 images from Inbreast training: 60%; validation: 20%; 

test: 20% of images 

40 × 40 candidate selection: 

4-DBN + GMM classifier; 

feature learning: cascade 

of two R-CNNs and two 

RF classifiers 

- 0.96 TPR at 1.2 FPI 

316 images from DDSM-BCRP 0.75 TPR at 4.8FPI 

Arevalo et al. (2016) mass classification 736 film images from 

BCDR-F03 

train: 368; validation: 73; 

test:295 

150 × 150 2 conv + 1 fc + softmax 

classifier 

about 1.4h (Tesla K40 

GPGPU card) 

AUC: 0.86 

Carneiro et al. (2015) mass classification 410 images from INbreast – 264 × 264 4 conv + 2 fc + softmax 

classifier 

on GPU GeForce 

GT650M; no extra 

training samples: 1 h; 

AUC: 0.91 

680 images from DDSM 20 additional training 

samples: 7.5 h 

AUC: 0.97 

Kallenberg et al. (2016) density scoring 493 mammograms from Dutch 

breast cancer screening 

program 

train: 48k patches; test: 1576 

cancer/ healthy controls 

24 × 24 3 conv + softmax classifier - AUC: 0.59 

texture scoring 668 mammograms from MMHS 

cohort 

AUC: 0.57 

Kooi et al. (2017) detection of 

mammographic lesions 

nearly 45,0 0 0 images from a 

large scale screening 

program in The Netherlands 

train: 44,090 images; test: 

18,182 images 

250 × 250 5 conv + 2 fc + classifier - ACC: 0.85 

Sun et al. (2016) mass classification 1,874 pairs in-house full-field 

digital mammography 

(FFDM) image database 

totally 3,158 RoIs 

train: 2400 RoIs; test: 758 RoIs 52 × 52 3 conv + SVM classifier - AUC: 0.88 

Kooi et al. (2016) classification of masses and 

architectural distortions 

397 images from large scale 

screening program in The 

Netherlands 

train: 334,752 patches 250 × 250 5 conv + 2 fc + classifier - AUC: 0.87 

Huynh et al. (2016) mass classification large scale screening program 

in The Netherlands 

train:1,311,272 patches; test: 

18,182 patches 

250 × 250 5 conv + 2 fc + classifier - AUC: 0.94 

Lévy and Jain (2016) mass classification 1820 images of 997 patients 

from DDSM 

train: 80%, validation: 10%; test 

10% of cases 

224 × 224 Baseline – ACC: 0.604 
AlexNet ACC: 0.89 

GoogleNet ACC: 0.929 

Jiao et al. (2016) mass classification 600 images from DDSM dataset – 227 × 227 5 conv + 2 fc + SVM 

classifier 

– ACC: 0.967 

( continued on next page ) 



A
.
 H

a
m

id
in

ek
o

o
 et

 a
l.
 /
 M

ed
ica

l
 Im

a
g

e
 A

n
a

ly
sis

 4
7
 (2

0
18

)
 4

5
–

6
7
 

5
5
 

Table 4 ( continued ) 

Reference Task Data Number of data Input size DL architecture Train time Evaluation 

Samala et al. (2016a) mass detection 2282 digitised film and digital 

mammograms and 324 DBT 

volumes from University of 

Michigan and University of 

South Florida 

train: 2689 mass patches; test: 

183 mass patches as true 

positive 

128 × 128 4 conv + 3 fc 8 days on NVIDIA Tesla 

K20 GPU 

AUC: 0.80 

Wang et al. (2016b) breast lesions classification – train: 10 0 0 images; test: 204 

images 

– two layer stacked denoising 

auto-encoder 

– AUC: 0.87 (on 

microcalcification 

features) 

AUC: 0.61 (on mass 

features) 

AUC: 0.90 (on 

combinational 

features) 

Chan et al. (1995) microcalcifications 

classification 

52 mammograms from 

University of Michigan 

train: nearly 1700 patches; 

test: nearly 220 patches 

16 × 16 2 hidden layers – AUC: 0.9 

20 × 20 

Samala et al. (2016b) microcalcifications 

classification 

64 digital breast tomosynthesis 

from University of Michigan 

train: 4808 patches; test: 2220 

patches 

16 × 16 2 conv + 2 

locally-connected layers 

+ 1 fc 

– AUC: 0.93 

Dubrovina et al. (2016) breast tissue segmentation 40 digital mammograms of 

mediolateral oblique (MLO) 

view A leave-one-subject-out 

cross validation procedure 

– 61 × 61 3 conv + 3 fc – Dice coefficient 

(DC): 0.71 

Fotin et al. (2016) density detection from 

digital breast 

tomosynthesis 

train: 1864 suspicious 

mammograms and 339 

lesions from DBT 

– 256 × 256 AlexNet – ACC: 0.86 



56 A. Hamidinekoo et al. / Medical Image Analysis 47 (2018) 45–67 

Fig. 6. (a): Mammary gland slide scanned with the pixel resolution of 49,440 × 77,227; (b): Extracted boxes represent different HPFs from the WSI (x10, x20 and x40 

magnification). 
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cal variations, abnormalities are first resized to a predefined size to

become suitable for the network. Based on the literature review, a

combination of deep learning based features and hand-crafted fea-

tures perform best, but more intelligent combinations are required

to be able to respond to the breadth of various mammographic ap-

plications. 

4. Deep learning in breast histology image processing 

4.1. Problem statement 

In breast histological imaging, when the biopsied sample is pre-

pared ( Veta et al., 2014 ), different tissue com ponents are visualised

by being stained. The standard staining protocol for breast tissue is

H&E which selectively stains nucleic structures blue and cytoplasm

pink. After cover-slipping of glass slides, the samples can be digi-

tised with a WSI 35 scanners at a specific magnification. Because of

its large size, it is common practice to identify areas of interest in

a patch-wise manner to be analysed in CAD systems to decrease

computational cost. Fig. 6 shows a mammary gland histology slide

selected from the University of British Colombia histology reposi-

tory. 36 This is shown by RoIs at x10, x20 and x40 magnification. 

For analysis of breast histopathological images, the Nottingham

Grading System (NGS) ( Bloom and Richardson, 1957 ) is recom-

mended by the World Health Organisation. This system is used

to predict patient prognosis and provides treatment recommen-

dations. It is derived from the assessment of three morphologi-

cal features: tubule formation, nuclear pleomorphism and mitotic

count ( Elston and Ellis, 1991 ). A numerical scoring system (1–3) is
35 Whole Slide imaging. 
36 publicly provided in http://histo.anat.ubc.ca . 
sed for the combination of the three grades of tumour differenti-

tion. These features, with the respective annotations, 37 are shown

n Fig. 7 . General quantitative analysis of breast tissue components

n WSI scans includes: nuclei, tubules, epithelium and stroma and

itotic detection. The introduction of deep learning concepts in

mage processing has provided big datasets along with annotations

or specific tasks and some of them are publicly available. Some

f these are listed in Table 2 . In this review, methods proposed by

arious deep learning based algorithms for analysing histological

omponents to grade breast cancer on histology data are covered. 

.2. Nuclei analysis 

Breast epithelial nuclei usually look different in shape, size, tex-

ure and mitotic count according to nuclei life cycle and malig-

ancy level of the disease. Nucleic pleomorphism has important di-

gnostic value for predicting the existence of disease and its sever-

ty. Inspired by Cire ̧s an et al. (2013) , Xu et al. (2014) developed

n unsupervised two-layer SSAE 38 framework for nuclei classifica-

ion. An SAE was trained to capture primary feature activations on

aw input patches. Then, these primary features were fed to an-

ther SAE to learn secondary features for each of the primary fea-

ures. Subsequently, being analysed by a classifier, the secondary

eatures were mapped to the respective labels. They compared

SSAE + softmax”, “PCA + softmax” and “a single layer SAE + soft-

ax” frameworks for the task of patch-wise classification. Their re-

ults showed the “SSAE + softmax” out-performed the other meth-

ds on their own dataset. They extended this framework to au-

omatically detect multiple nuclei by computing locally maximal
37 publicly provided at http://www.andrewjanowczyk.com . 
38 Stacked sparse AutoEncoder. 

http://histo.anat.ubc.ca
http://www.andrewjanowczyk.com
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Fig. 7. Top row: different patches extracted from different WSI scans; bottom row: annotations for a specific purpose. It should be noted that inter/intra observer variation 

in manual annotations can be high. (a) Nuclei detection/segmentation in order to perform pleomorphism grading; (b) Tubule detection/segmentation to assess the degree of 

structural differentiation in the tissue; (c): Epithelial and Stromal region detection/segmentation that have different significance for prognosis; (d) Mitotic figure detection 

for grading tumour proliferation i.e. number of mitoses and mitotic activity in tumours correlates with grade and poorer diagnosis. 
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onfidence scores across the entire image ( Xu et al., 2016b ). They

urther compared their model with several nuclei detection meth-

ds and concluded that this framework could provide accurate

eed points for developing cell-by-cell graph features. Characteris-

ng cellular topology features on tumour histology was reported to

e a promising advantage of this framework. Janowczyk and Mad-

bhushi (2016) performed a comprehensive study of deep learn-

ng approaches for 5 different breast tissue tasks in histology im-

ge processing. They provided additional online material and im-

lementations 39 and tried to decrease computational cost caused

y interrogating all the image pixels ( Janowczyk et al., 2016 ). To

his end, a resolution adaptive deep hierarchical learning scheme

as suggested in which higher levels of magnification were used

hen needed. As a result, they were able to reduce the com-

utation time by about 85% on ER + 

40 breast cancer images.

ing et al. (2016) performed nucleus segmentation while preserv-

ng the shape by generating probability maps using CNN models

nd applying selection-based sparse shape and local repulsive de-

ormable models. They showed that this approach is applicable to

ifferent H&E stained histopathology images, evaluating on three

istopathology image datasets from different tissues (including

reast tissue) and stain preparations. Veta et al. (2016b) computed

tatistics of individual nuclei and surrounding regions by training

 deep-CNN 

41 model on tumour region images with known nuclei

ocations. They were able to do so directly from the image data

ithout the need for nuclei segmentation. Xie et al. (2015) pro-

osed a modified CNN model for cell detection by using a struc-

ured regression layer instead of a classifier. This way, they aimed

o encode topological information which was ignored in the con-

entional CNN because of the coherency in labelled regions. Han-

ling inhomogeneous background noise and size and shape varia-

ions were the significant strength of their method. 

.3. Tubules analysis 

Identifying tubule nuclei from WSIs in order to calculate the ra-

io of tubule nuclei to the overall number of nuclei (tubule for-
39 http://www.andrewjanowczyk.com . 
40 Estrogen-receptor-positive. 
41 DCNN. 
ation indicator) was studied by Romo-Bucheli et al. (2016) . They

sed a customised CNN to quantify tubule score in ER + breast can-

er WSIs. Patches of nuclei candidates, that were extracted by the

ustomised CNN, were manually labelled as containing a tubule or

ot. Subsequently, a deep learning based network was trained to

etect and classify tubule nuclei. They concluded that the tubule

ormation indicator correlated with the likelihood of cancer recur-

ence. 

.4. Epithelial and stromal region analysis 

For this task, Xu et al. (2016a) presented a patch based DCNN 

42 

pproach for distinguishing epithelial and stromal components

n H&E stained tissue images. The images were over-segmented

nto small regions using two different superpixel algorithms (the

cut 43 algorithm and the SLIC 

44 algorithm). Evaluating the com-

arative strategies, the combination of DCNN with the Ncut-

ased algorithm and a SVM classifier led to the best results.

ejnordi et al. (2017) trained two deep CNNs inspired by VGGNet.

he only modification was that they replaced the two fully con-

ected layers with convolutions to allow arbitrary input sizes to be

ed to the network. In their work, the first CNN model was trained

o classify the WSI into epithelium, stroma, and fat. The second

NN model was trained on the resulting stromal areas to classify

he stromal regions as normal or cancerous. 

.5. Mitotic activity analysis 

To quantify the locality and proliferative activity of breast tu-

ours, mitotic count is estimated as the number of mitoses in an

rea of 2 mm 

2 (usually using microscope magnification of × 40)

nd reported as the MAI 45 ( Van Diest et al., 2004 ). This gives

n evaluation of the aggressiveness of the tumour. Mitosis de-

ection is challenging due to the small size with a large variety

f shape configurations of mitoses. In H&E stained breast cancer
42 Deep CNN. 
43 Normalised cut. 
44 Simple linear iterative clustering. 
45 Mitotic activity index. 

http://www.andrewjanowczyk.com
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sections, mitoses are hyperchromatic objects lacking a clear nu-

clear membrane with their own specific shape properties. Inspired

by the outstanding results for using patch-driven CNN in im-

age classification and segmentation ( Cire ̧s an et al., 2012a; 2012b ),

Cire ̧s an et al. (2013) used the deep max-pooling CNN architec-

ture operated directly on raw RGB pixels. They tried to reduce the

deep neural network’s variance and bias by averaging the outputs

of multiple classifiers with different architectures along with us-

ing rotational invariance. Their method won the ICPR12 compe-

tition with the highest F-score and precision. With the same ap-

proach plus employing a Multi-column CNN, the same team won

the AMIDA13 competition in which three CNNs were trained on

nearly 20 million samples ( Veta et al., 2015 ). The output proba-

bilities of the CNNs were averaged and used as the final result.

Wang et al. (2014a,b) fused a lightweight CNN with hand-crafted

features (morphological, statistical and textural sets) for each can-

didate region defined by thresholding. Extracting these features in-

dependently, a cascade of two random forest classifiers was com-

bined and trained. They showed that the integrated approach re-

sulted in superior detection accuracy compared to individual deep

learning or hand-crafted feature based approaches. In the same

way, Malon and Cosatto (2013) combined manually segmentation-

based nuclear features (colour, texture, and shape) with the fea-

tures extracted by a LeNet-5 architecture ( LeCun et al., 2010 ). Re-

ported advantages were: handling the appearance varieties in mi-

totic figures, decreasing sensitivity to the manually crafted features

and thresholds. Chen et al. (2016a) suggested a deep cascade neu-

ral network with two phases. In the first phase, a 3-layer CNN was

utilised to retrieve probable mitosis candidates and in the second

phase, three CaffeNet-based CNNs ( Jia et al., 2014 ) were used to

detect mitotic cells in all positive samples determined by the first

CNN. In other work, Chen et al. (2016b) implemented a deep re-

gression network along with transferred knowledge for this task

and showed the efficiency of their proposed approach in dealing

with automatic mitosis detection. 

To overcome the bottleneck of access to a large number

of annotated training samples for mitosis detection with deep

CNNs which is more critical compared to the other tasks,

Albarqouni et al. (2016) presented a new concept for learning

from crowds and generating ground-truth labelling from non-

expert crowd sourced annotations. In their proposed data aggrega-

tion framework, they trained a multi-scale CNN model using gold-

standard annotations. Then, in the second step, using the incom-

ing unlabelled image, aggregation schemes were integrated into

CNN layers via an additional crowdsourcing layer (AggNet). AggNet

could produce a response map, refine the CNN model by filtering

out weak responses and simultaneously generate a ground-truth

by majority crowd sourced votes. They analysed the behaviour of

CNN with and without aggregation and confirmed that aggregation

and deep learning from crowd annotations was robust to noisy la-

bels (multiple different labels for the same sample). They claimed

that not only could deep CNNs be trained with data collected from

crowdsourcing, but also it positively influenced the CNN perfor-

mance. Such results could be valuable in giving insight into the

functionality of deep CNN learning from crowd sourced annota-

tions. Veta et al. (2016a) presented an analysis of the object-level

inter-observer agreement on mitosis counting. They compared the

performance of their deep learning based mitosis detection which

was trained on the AMIDA13 database with the performance of ex-

pert observers on an external dataset. They described disagreement

among pathologists which in some cases was significant. They con-

cluded that automatic mitosis detection performed in an unbiased

way and provided substantial agreement with human experts. 
h  
.6. Other tasks in breast digital histopathology image processing 

Detection of invasive ductal carcinoma 46 in WSI for the estima-

ion of tumour grading and the prediction of patient outcome was

one by Cruz-Roa et al. (2014) . Using a three-layer CNN, they eval-

ated their network over a WSI dataset from 162 patients diag-

osed with IDC. Comparing their results with the outcome from

and-crafted image features (colour, texture and edges, nuclear

extural and architecture) with a random forest classifier, they re-

orted their best quantitative results for automatic detection of IDC

egions in WSI. 

Wang et al. (2016a) investigated the applicability of various

NNs (AlexNet, GoogLeNet, VGG16 and FaceNet) in breast can-

er metastases detection in resected sentinel lymph nodes (first

ymph node to which cancer cells are most likely to spread

o). They won the Camelyon16 competition for WSIs classifica-

ion and tumour localisation. In their results, the two deeper

etworks (GoogLeNet and VGG16) achieved the best patch-based

lassification performance with x40 magnification. Their results

lso demonstrated that the combination of deep learning meth-

ds with pathologist’s interpretation could reduce the error rate

y 85% which is a significant improvement in diagnostic accu-

acy. Similarly, Litjens et al. (2016) identified slides that did not

ontain micro/macro-metastases. Accordingly, a CNN was trained

o obtain per-pixel cancer likelihood maps and segmentations in

hole-slide images rather than a patch-by-patch classification.

anowczyk et al. (2017) attempted to evaluate Stain Normalisation

ia Sparse AutoEncoders under different circumstances: (i) in dif-

erent concentrations of H&E in the same tissue section; (ii) with

he same slides being scanned multiple times on different plat-

orms. In addition, they compared their proposed approach with

ther colour normalisation methods and reported outperforming

he alternative approaches. Their approach standardised colour dis-

ributions of a test image to a single template image and increased

obustness to different sources of variance like specimen thickness,

tain concentration and scanner. 

.7. Summary 

Deep learning algorithms try to emulate the way histopathol-

gists examine whole tissue slides. Several studies have compared

he performance of deep learning methods to the performance and

nterobserver agreement of expert pathologists ( Giusti et al., 2014 ).

istopathologists analyse the image at low magnifications and

hen perform more sophisticated analysis on some specific areas

equiring more detailed information under higher magnification.

electing appropriate magnifications in deep learning methods re-

ains a challenge. The identification of the best training set con-

aining richly informative exemplars is another concern. However,

he lack of readily available annotated data for digital histopathol-

gy analysis is not as critical as for mammography since one

SI typically contains trillions of pixels from which hundreds of

argeted examples can be extracted. Moreover, some competition

hallenges (see Section 1.3 ) have provided access to publicly avail-

ble data which are systematically annotated. From the literature,

t can be concluded that, deep learning approaches have proven

apability in discriminating between the targeted classes by com-

ining both feature discovery and implementation. The strategy of

ombining both deep learning based and hand-crafted features has

nabled the possibility of achieving state-of-the-art performance

hen using AI for the interpretation of x-ray and histology images

f breast cancer. Although these deep learning based approaches

ave demonstrated promising results, there is still progress to be
46 IDC. 
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Table 5 

Detailed information for deep learning based methods used in breast histopathology; ∗conv: convolution, ∗fc: fully connected; ∗FFDM: full field digital mammography; ∗HPF: high power field. 

Reference Task Data Number of data Input size DL Architecture Train time Evaluation 

Xu et al. (2014) nuclei classification 17 patient cases containing 37 

H&E images at Case Western 

Reserve University 

train: 14421 nuclei and 28032 

non-nuclei patches; test: 

20 0 0 nuclei and 20 0 0 

non-nuclei patches 

34 × 34 SSAE with 2 hidden layers 

(500 and 100 neurons 

respectively) + classifier 

– F-score: 0.82 

Xu et al. (2016b) nuclei detection 537 H&E images corresponding 

to 49 lymph node-negative 

and estrogen 

receptor-positive breast 

cancer (LN-, ER + BC) patients 

at Case Western Reserve 

University 

train: 37 images; test: 500 

images 

34 × 34 SSAE with 2 hidden layers 

(400 and 225 neurons 

respectively) + classifier 

2.15 h F-score: 0.8449 

Xing et al. (2016) nucleus segmentation anonymous train: 35 images; test: 35 

images 

45 × 45 CNN: 2 conv + 3 fc + 

classifier 

- F-score: 0.78 

Xie et al. (2015) cell detection 32 images from The Cancer 

Genome Atlas (TCGA) dataset 

train: 16 images; test: 16 

images 

49 × 49 CNN: 2 conv + 3 fc – F-score: 0.913 

Janowczyk et al. (2016) nuclear segmentation anonymous 141 ER + breast cancer images 32 × 32 AlexNet – F-score: 0.84 

Veta et al. (2016b) computing nuclear area 

statistics 

39 slides from patients with 

invasive breast cancer from 

University Medical Center 

Utrecht, The Netherlands 

train: 14 cases; validation: 7 

cases; test: 18 cases 

96 × 96 CNN: 8 conv + 2 fc + 

classifier 

- coefficient of 

determination: 0.77 

Xu et al. (2016a) Epithelial-Stromal 

segmentation 

106 H&E images from 

Netherlands Cancer Institute 

(NKI) 

train: 69 images; test: 37 

images 

50 × 50 2 conv + 2 fc + Softmax 

classifier 

– F-score: 0.8521 

51 H&E images from Vancouver 

General Hospital (VGH) 

train: 36 images; test: 15 

images 

F-score: 0.891 

Romo-Bucheli et al. (2016) tubule detection and 

classification 

174 ER + breast cancer images train: 163 patient WSI; test: 11 

patient WSI 

64 × 64 CNN: 3 conv + 3 fc + 

classifier 

– F-score: 0.59 

Bejnordi et al. (2017) classification of tissue into 

epithelium, stroma, and 

fat. 

646 H&E sections (4 4 4 cases) 

in the Breast Radiology 

Evaluation and Study of 

Tissues (BREAST) Stamp 

Project 

training: 270 WSIs; 224 × 224 CNN1: VGG-net with 11 

layers 

– ACC: 0.95 

stromal regions 

classification 

validation: 80 WSIs; CNN2: VGG-net with 16 

layers 

ACC: 0.921 

breast cancer classification test: 296 WSIs CNN1 + CNN2 + random 

forest classifier 

ROC: 0.92 

Cire ̧s an et al. (2013) mitosis detection ICPR12 mitosis dataset train: 35 HPFs; test: 15 HPFs 101 × 101 DNN1: 5 conv + 2 fc + 

softmax classifier; DNN2: 

4 conv + 2 fc + softmax 

classifier 

– F-score: 0.782 

Malon and Cosatto (2013) mitosis detection ICPR12 dataset train: 35 HPFs; test: 15 HPFs 72 × 72 CNN (2 conv + 2 fc + SVM 

classifier) + hand-crafted 

features 

F-score (on colour 

scanners) = 0.659 

– F-score (on 

multispectral 

scanner) = 0.589 

( continued on next page ) 
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Table 5 ( continued ) 

Reference Task Data Number of data Input size DL Architecture Train time Evaluation 

Wang et al. (2014a) mitosis detection ICPR12 dataset train: 35 HPFs; test: 15 HPFs 80 × 80 cascade of CNN (2 conv + 

1 fc + RF classifier) 

about 18 h with GPU F-score: 0.7345 

AMIDA13 dataset train: 12 HPFs; test: 11 HPFs and hand-crafted features – F-score: 0.319 

Albarqouni et al. (2016) mitosis detection AMIDA13 dataset train: 311 HPFs; validate: 60 

HPFs; test: 295 HPFs 

33 × 33 3 conv + 1 fc – AUC: 0.8695 

Chen et al. (2016b) mitosis detection ICPR12 mitosis dataset train: 35 HPFs; test: 15 HPFs 480 × 480 CNN: 5 conv + 3 fc + 

classifier 

– F-score: 0.79 

breast cancer metastasis 

detection and localisation 

256 × 256 GoogLeNet ACC: 0.984 

Wang et al. (2016a) Camelyon16 train: 270 WSI; test: 130 WSI AlexNet – ACC: 0.921 

VGG16 ACC: 0.979 

FaceNet ACC: 0.968 

Litjens et al. (2016) breast cancer metastasis 

detection in sentinel 

lymph nodes 

digitised H&E-stained slides 

from 271 patients at 3D 

Histech, Budapest, Hungary 

train: 98 slides; validation: 33 

slides; test: 42 slides 

128 × 128 4 conv + 2 fc per epoch: 200 min 

using GeForce GTX970 

AUC: 0.88 

Cruz-Roa et al. (2014) invasive ductal carcinoma 

(IDC) detection 

169 cases from the Hospital of 

the University of 

Pennsylvania and The Cancer 

Institute of New Jersey 

train: 82,883 patches; 

validation: 31,352 patches; 

test: 50,963 patches 

100 × 100 2 conv + 2 fc + logsoftmax 

classifier 

– F-score: 0.718 

Janowczyk et al. (2017) stain normalization anonymous train: 200 images; test: 25 

images 

32 × 32 AE: 2 layer, first layer with 

1,0 0 0 hidden neurons, 

second with 10 hidden 

neurons 

5 hours using a Nvidia 

M2090 GPU with 512 

cores at 1.3 GHz 

error: 0.047 

Janowczyk and 

Madabhushi (2016) 

nuclei segmentation anonymous train:100; test:28 32 × 32 AlexNet F-score: 0.83 

epithelium segmentation train:34; test: 8 on Tesla M2090 

GPU + CUDA.5, without 

cuDNN: 

F-score: 0.84 

tubule segmentation train:21; test:5 22 hours; F-score: 0.83 

mitosis detection - on Tesla K20c + CUDA.7 

with cuDNN: 

F-score: 0.53 

invasive ductal carcinoma 

detection 

- 4 hours F-score: 0.76 
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ade to reach clinically acceptable results. Detailed information

bout the implementation of deep learning based methods, cov-

red in this section, is provided in Table 5 . 

. Biological mammography histology association 

From a biological point of view, it has been long recognised

hat in the breast the underlying differences in cellular architecture

nd nuclear morphological alterations lead to tissue changes and

he formation of masses, microcalcifications or other abnormali-

ies ( Boyd et al., 1992 ). Tumour morphology in histology images

an reflect some of all possible molecular pathways occurring in

umour cells. In other words, these biological pathways and cellu-

ar alterations contribute to the structural and functional attributes

n radiographic images ( Madabhushi and Lee, 2016 ), which is rep-

esented by both mammography and histology. 

There are a number of publications which have provided evi-

ence for the association between radiological and histological risk

actors ( Ghosh et al., 2012; Pang et al., 2015; Holland and Hen-

riks, 1994; Britt et al., 2014; Lamb et al., 20 0 0; Beck et al., 2011;

un et al., 2014; Dos Santos et al., 2016 ). Britt et al. (2014) de-

ned the association between histopathological characteristics and

ammographic density based on the changes in epithelial cells,

tromal cells, the extracellular matrix, immune infiltrating and the

oles of each cell type in breast cancer initiation and progres-

ion. In a case study, Holland and Hendriks (1994) investigated the

ink between mammographic and histologic appearances in dif-

erent types of DCIS. 47 They found that linear, branching, granu-

ar and coarse microcalcifications corresponding to the amorphous

ype calcifications in histology were associated with high grade

CIS. While multiple clusters of fine granular microcalcifications

orresponding to the clusters of laminated, crystalline calcifica-

ions in histology were associated with well-differentiated DCIS.

amb et al. (20 0 0) reported that larger tumour sizes on mam-

ography resulted in higher grades in histology. However, spicu-

ated margins on a mammogram, associated with acoustic shadow-

ng on ultrasound, were documented as low-grade tumours while

ost high-grade tumours had a poorly defined margin. Malignant-

ype microcalcifications were mostly seen in mammograms asso-

iated with high-grade tumours. Ghosh et al. (2012) also reported

hat dense areas of the breast in mammograms are different from

on-dense areas from a histological point of view so that investi-

ation of both epithelial and stromal components were important

n understanding the association between mammographic den-

ity and breast cancer risk. Identification of histologic image fea-

ures that can be predictive of breast cancer survival were studied

y Beck et al. (2011) . Sun et al. (2014) investigated the relation-

hip between breast tissue composition and age, body mass index,

nd tumour grade. They concluded that morphological features

f breast tissue could influence breast cancer etiology. Dos San-

os et al. (2016) investigated biological aspects of immunohisto-

hemical and histological composition of dense and non-dense

reast tissue in 18 women. Based on their reported findings, the

umber of TDLU 

48 was higher in dense tissue. They concluded that

oth stroma fibrosis and epithelial proliferation were responsible

or higher mammographic density, so that no proliferative lesions

ith atypia were found in non-dense tissue, while epithelial atypia

as observed in some dense areas. In addition, proliferative lesions

ithout atypia and non-proliferative lesions were found in both

issues, but more frequently in dense tissue. Extensive or moder-

te fibrosis in dense tissue was the other differentiation with non-

ense tissue histological characterisation. 
47 Ductal carcinoma in-situ. 
48 Terminal ductal lobular units. 

 

t  

a  

s  
Tot and Tabár (2011) investigated correlation of the radiologic

nd histopathologic findings. They assessed the clinical relevance

f several parameters, that are often verified by pathologists and

ocumented in large-format histological sections, such as: size of

he cancer, the extent of the disease, the distribution of lesions

nd tumour heterogeneity. They concluded that a comprehensive

adiological-pathological correlation was the most informative way

f early breast cancer diagnosis so that diagnostic failure was due

o insufficient radiological-pathological correlation. 

Despite biological interpretations, the internal information, gen-

rated in deep networks used in CAD systems, has the potential

o add to our knowledge about the existing association between

istological compositions and mammographic phenotypes. This is

iscussed in more details in the next section. 

. Conclusions and future trends 

.1. Conclusions 

As explained in Sections 3 and 4 , information for estimat-

ng breast cancer stage and risk can be obtained using different

maging modalities. Methods focused on in this review include

istological appearance of the breast nuclei and epithelium de-

ected in biopsy specimens, radiological appearance of abnormality

nd parenchymal patterns in densities revealed by mammograms.

hese imaging modalities that manifest across multiple different

ength scales (micro and macro imaging scales) offer a wide range

f information and clinicians combine these heterogeneous sources

f data for better disease diagnosis and treatment planning. How-

ver, as described in Section 2 , many cases with suspicious abnor-

al findings in mammography who went for further biopsy, even-

ually were found to have unnecessary biopsies. Motivated by the

iological association between mammography and histology (cov-

red in Section 5 ) and considering the capabilities of deep learning

ased models in learning from raw data suggests a methodology to

otentially reduce biopsies. It is assumed that the appearance of

ammographic abnormalities can be linked to specific histological

nformation and can predict how the micro-biological changes are

eflected in macro-images. 

.2. Mammography–Histology–Phenotype–Linking–Model 

Finding radiological-histopathological correlation/association 

as been investigated from a biological point of view as described

n Section 5 . Most of these epidemiological studies are based

n empirical observations and statistical risk analysis. However,

o the best of our knowledge, a computer based model of such

orrelation/association is not yet developed. In this paper, we

ave tried to cover this research question and propose a general

ramework for fully automatic linking of mammographic and

istologic phenotypes. 

Fig. 8 , shows the development of automatic CAD systems

or the mammography and histology data analysis (covered in

ections 3 and 4 , respectively), which are expected to use mod-

rn machine learning techniques (e.g. deep learning, Convolutional

eural Networks, autoencoders, etc.) to determine a set of mam-

ographic ( F M 

) and histological ( F H ) phenotypes/features/abstracts,

hich are discriminative in various image processing tasks such as

etection, segmentation and classification. It should be noted that

he modelling will be an optimisation process and for the train-

ng data the labels are used to estimate the model parameters and

enerate appropriate features. 

Once the mammographic and histological models are estimated,

hey can be used to generate patient matched mammographic

nd histological feature/phenotype weighting and their relation-

hip can be estimated by developing a model linking the two
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Fig. 8. Separate CAD models for (a) mammography ( Model M ) and (b) breast histology ( Model H ). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

s  

a  

t  

b  

c  

i  

d  

o  

a  

a  

N  

f  

m  

t  

c  

f  

e  

c

based on machine learning techniques (see Fig. 9 ). The auto-

matic extraction of morphological/appearance features from mam-

mographic and histological images and building a map between

these based on a large dataset form essential parts in devel-

oping such a model. One possible solution for developing such

a “Mammography–Histology–Phenotype–Linking–Model” or in short

“ML M< −>H ” is shown in Fig. 10 . In this approach, a mammographic

model ( Model M 

) can be trained, which is based on minimising the

difference between NHS/BIRADS labels provided by expert radiol-

ogists and those predicted/estimated by the model. Subsequently,

salient deep and high level features are generated ( F M 

) and a pool

of deep learning based features is created for each individual im-

age. Similarly, a histological model ( Model H ), which is based on

minimising the difference between NHSBSP histopathology reports

and those predicted/estimated by the model can be trained. Us-

ing the Nottingham Grading System (NGS), this model is able to

predict scores of 1–3 for three cellular components important in

breast histology diagnosis (i.e. nuclei, tubules and mitoses). At the
ame time, this model is capable of creating a pool of high level

nd deep learning based features for each component. Permuta-

ion of the 3 scores for each histological component with 2 possi-

le outcomes (benign and malignant) will result in 54 possible oc-

urrences (3 3 × 2). Therefore, 54 clusters can be formed, although

t should be noted that some might only be sparsely populated. To

evelop the ML M< −>H model, the starting point is to generate a set

f matched mammographic and histologic features/abstracts cre-

ted by Model M 

and Model H , respectively. To achieve this, the cre-

ted mammographic features are associated with their respective

GS cluster and a pool of representative mammographic features

or a specific cluster is formed. Meanwhile, each cluster in the per-

uted set contains a pool of previously generated histologic fea-

ures. A mapping between the two feature spaces will be provided

onsidering that mammographic and histologic data are provided

or individual cases. Eventually, machine learning techniques are

xploited to retrieve different morphological appearances for each

luster, resulting in the final ML M< −>H model. 
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Fig. 9. General framework for developing the Mammography–Histology–Phenotype–Linking–Model. (a) Model M : mammographic machine learning based model creating 

mammographic features ( F M ); (b) Model H : histological machine learning based model creating histological features ( F H ); (c) the ML M< −>H model for providing associations 

between mammographic and histologic features. 

Fig. 10. Proposed methodology of developing the Mammography–Histology–Phenotype–Linking–Model using deep learning based approaches. Model M : mammographic deep 

learning based model, Model H : histological deep learning based model, F M : mammographic high level deep learning based features, F H : histological high level deep learning 

based features, ML M< −>H : relationships between the mammographic and histologic phenotypes. This can be achieved by: (1) creating different clusters based on permuta- 

tion of 3 histological score occurrences; (2) associating created pools of deep learning based features to the proper cluster based on the available annotations and making 

discriminative clusters; (3) matching representative pools of mammographic and histologic features; (4) by using high level histologic abstracts and performing deconvolu- 

tion/decoding of Model H , morphological approximations can be estimated. 
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An alternative approach to develop the ML M< −>H model (see

ig. 11 ) avoids the need for clustering and basically uses the

atched F M 

and F H features, as respectively input and output to

uild a simple autoencoder model which maps the two domains

hrough a reduced set of features. The downside of such a model

s the lack of clinical reference of the reduced feature set, whilst

he advantage is the simplicity of the resulting ML M< −>H model. 

The final stage of development is to use unseen mammo-

raphic cases to predict the histological classification based on

he Nottingham Grading Scheme. An overall predictive model is
hown in Fig. 12 . An unseen mammographic case can be pro-

essed in a number of ways, which all require initial process-

ng towards a mammographic phenotype/feature ( F M 

) representa-

ion. The mammographic classification stage ( C M 

) leads to mam-

ographic NHS/BIRADS classification. Using appropriate similarity 

easures in the ML M< −>H model, predicted feature sets are asso-

iated to the closest cluster which results in NHSBSP Histopathol-

gy Reporting Form classification (or the NN model) and the set

f matched abstract features ( F H ), which with Model H leads to the

stimation of histological appearance/ phenotypes. 
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Fig. 11. Proposed methodology of developing the Mammography–Histology–

Phenotype–Linking–Model using deep learning based approaches. Model M : mammo- 

graphic deep learning based model, Model H : histological deep learning based model, 

F M : mammographic high level deep learning based features, F H : histological high 

level deep learning based features, ML M< −>H : relationships between the mammo- 

graphic and histologic phenotypes. This can be achieved by using matched F M and 

F H features as input and output of a neural network (e.g. an autoencoder) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6.3. Possible challenges 

Despite the promising results obtained by deep learning ap-

proaches, there are remaining challenges for the development of

the ML M< −>H model, which include: 

1. Data availability : The first and most basic challenge is the avail-

ability of a large number of training samples specifically for

this application since the mammograms and histological im-

ages should be matched for individual women. The number

of samples should be large enough for deep network train-

ing purposes. However, existing datasets can be used in the

pre-training stage to compensate for the lack of annotated

mammography/histopathology data. Appropriate data might be

available on existing PACS (Picture Archiving and Communi-

cation Systems). As explained in Section 1.1 , women are sent

for mammography imaging prior to biopsy. Therefore, for the

existing histological data, the respective mammograms and

the corresponding diagnostic reports exist in digital structured

archives, but ethical and research governance agreement and

approval will be necessary. 

2. Combinational ground truth : Appropriate ground truth for the

validation part of each individual, mammography and histology

image processing, task should be defined systematically. For ex-
Fig. 12. Using the Mammography–Histology–Phenotype–Linking–Model ( ML M< −>H ) for u

tological machine learning based model, F M : mammographic phenotypes, F H : histologica

mammographic and histologic phenotypes. 
ample the annotations required for breast tissue segmentation

in mammograms (characterisation) is different from the anno-

tation required for cancer and non-cancer classification of the

tissues. The annotation required for the mitotic count (charac-

terisation) in histopathology is very different from the anno-

tation required for cancer and non-cancer classification of the

regions (classification). For associating abnormal phenotypes in

a mammogram to characteristics of the tumour in histology,

some specific annotations (location and type of abnormality

along with locations of nuclei, mitosis count and tubules mor-

phology) are of interest. 

3. Subjectivity of annotations : If possible, annotations should be

provided by different radiologists and histopathologists to ac-

commodate subjective variations. This inter/intra expert varia-

tion then needs to be taken into account ( Irshad et al., 2014 ). 

4. Robustness to data acquisition methods : The issue of robustness

to various clinical/technical conditions should be addressed so

that gradually more datasets can be added. These variations in-

clude: different scanners used for image acquisition; different

lighting conditions; various size and views in both mammogra-

phy and histology; different staining appearance characteristics

and magnification factors in histology. The developed method

should be robust with respect to such variabilities and appro-

priate normalisation techniques could facilitate this. 

5. Interpretability of model layer information : Unlike hand-crafted

features that provide transparent information, which are more

intuitive and interpretable to clinicians and researchers, deep

learning driven features rely on filter responses solicited from

a large amount of training data which suffer from a lack of di-

rect human interpretability. Therefore, approaches to blend do-

main inspired features with deep learning based features can

be taken into consideration in order to take advantage of do-

main knowledge while enabling the classifier to discover addi-

tional features. 

6. Association making algorithms : New algorithms for combining

mammographic and histologic measurements should be de-

signed, which is a more detailed version of the high level de-

scriptions provided in Section 6.2 . By finding and visualising

a logical association between outcome features introduced by

deep networks and the salient diagnostic features incorporated

in conventional machine learning based CAD systems, a subset

of clinically salient features can be determined. Such associa-

tion making algorithms, as the novel part of mammographic-
nseen cases. Model M : Mammographic machine learning based model, Model H : his- 

l phenotypes, C M : mammographic classification, ML M< −>H : relationships between 
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histologic linking map introduced in this paper, is an open chal-

lenge for future research. One alternative approach to tackle

this challenge is by combining image data with text reports as

addressed by Shin et al. (2015) while expanding this to the field

of radiology and histology in order to mine the semantic inter-

actions between radiology and histology images and the corre-

sponding reports. 

7. Clinical feedback : More evidence and feedback regarding the re-

sults of clinical applications using the developed models will

need to be provided by clinicians. Close cooperation between

radiologists, pathologists and computer scientists will be neces-

sary for the optimum management of data, analysing the per-

formance of developed methods in a clinical setting with feed-

back from the radiologists and histopathologists throughout the

research process. 

.4. Clinical relevance 

The described linking map is expected to reduce the need for

urther biopsy when the mammographic abnormality is deemed

enign as it is reported from a biological point of view ( Tot and

abár, 2011 ). This association map could contribute to clinical deci-

ion making, diagnosis and treatment management. This may also

mprove the capabilities of computer aided prognosis systems to

nd patients susceptible to specific breast cancer types at an early

tage and as such decrease time before diagnosis, expense and

tress. This exploratory research work could be further extended

o finding the link between mammography phenotypes, histolog-

cal signatures and protein/gene expression and so be useful for

redicting recurrence of and survival after breast cancer. Other

maging modalities for breast imaging, such as MRI and Ultrasound

ould be exploited in the development of a linking map. This could

lso cover various ethnic populations and links to breast cancer

athways. It could identify sub-cellular patterns of involved pro-

eins and their locations for cancerous and non-cancerous tissues

y avoiding the need for invasive biopsy sampling. Identification of

he factors responsible for high-risk histological changes can po-

entially lead to modelling of disease appearance, better prediction

f disease aggressiveness and finally patient outcome. 

eferences 

lbarqouni, S. , Baur, C. , Achilles, F. , Belagiannis, V. , Demirci, S. , Navab, N. , 2016. Ag-
gnet: Deep learning from crowds for mitosis detection in breast cancer histol-

ogy images. IEEE Trans. Med. Imaging 35 (5), 1313–1321 . 

merican-Cancer-Society, 2016. What are the key statistics about breast
cancer?. URL: http://www.cancer.org/cancer/breastcancer/detailedguide/ 

breast- cancer- key- statistics . 
MIDA13, 2017. Assessment of mitosis detection algorithms. MICCAI Grand Chal-

lenge URL: http://amida13.isi.uu.nl . 
revalo, J. , González, F.A. , Ramos-Pollán, R. , Oliveira, J.L. , Lopez, M.A.G. , 2015. Convo-

lutional neural networks for mammography mass lesion classification. In: IEEE

37th Annual International Conference of the Engineering in Medicine and Biol-
ogy Society (EMBC), pp. 797–800 . 

revalo, J. , González, F.A. , Ramos-Pollán, R. , Oliveira, J.L. , Lopez, M.A.G. , 2016. Rep-
resentation learning for mammography mass lesion classification with convolu-

tional neural networks. Comput. Methods Programs Biomed. 127, 248–257 . 
eck, A.H. , Sangoi, A.R. , Leung, S. , Marinelli, R.J. , Nielsen, T.O. , van de Vijver, M.J. ,

West, R.B. , van de Rijn, M. , Koller, D. , 2011. Systematic analysis of breast cancer

morphology uncovers stromal features associated with survival. Sci. Transl. Med.
3 (108) . 108ra113–108ra113 

ejnordi, B. E., Linz, J., Glass, B., Mullooly, M., Gierach, G. L., Sherman, M. E., Karsse-
meijer, N., van der Laak, J., Beck, A. H., 2017. Deep learning-based assessment of

tumor-associated stroma for diagnosing breast cancer in histopathology images.
In: arXiv preprint, arXiv:1702.05803 . 

ekker, A.J. , Greenspan, H. , Goldberger, J. , 2016. A multi-view deep learning architec-
ture for classification of breast microcalcifications. In: 13th International Sym-

posium on Biomedical Imaging (ISBI). IEEE, pp. 726–730 . 

engio, Y. , 2009. Learning deep architectures for AI. Found. Trends® Mach. Learn. 2
(1), 1–127 . 

loom, H. , Richardson, W. , 1957. Histological grading and prognosis in breast cancer:
a study of 1409 cases of which 359 have been followed for 15 years. Br.J. Cancer

11 (3), 359–377 . 
oyd, N. , Jensen, H.M. , Cooke, G. , Han, H.L. , 1992. Relationship between mammo-
graphic and histological risk factors for breast cancer. J. Natl. Cancer Inst. 84

(15), 1170–1179 . 
oyd, N.F., Martin, L.J., Bronskill, M., Yaffe, M.J., Duric, N., Minkin, S., 2010. Breast

tissue composition and susceptibility to breast cancer. J. Natl. Cancer Inst. 102,
1224–1237. doi: 10.1093/jnci/djq239 . 

oyer, B. , Balleyguier, C. , Granat, O. , Pharaboz, C. , 2009. CAD in questions/answers:
review of the literature. Eur.Radiol. 69 (1), 24–33 . 

reast-Cancer-Biopsy, 2016. Breast Cancer Biopsy. URL: http://www.breastcancer.

org/symptoms/testing/types/biopsy . 
ritt, K. , Ingman, W. , Huo, C. , Chew, G. , Thompson, E. , 2014. The pathobiology of

mammographic density. . Cancer Biol. Res. 2 (1), 1021 . 
yng, J.W. , Boyd, N. , Fishell, E. , Jong, R. , Yaffe, M.J. , 1994. The quantitative analysis

of mammographic densities. Phys. Med. Biol. 39 (10), 1629 . 
AMELYON16, 2016. ISBI challenge on cancer metastasis detection in lymph node.

URL: https://camelyon16.grand-challenge.org . 

AMELYON17, 2017. Automated detection and classification of breast cancer metas-
tases in whole-slide images of histological lymph node sections. URL: https:

//camelyon17.grand-challenge.org . 
arneiro, G. , Nascimento, J. , Bradley, A.P. , 2015. Unregistered multiview mammo-

gram analysis with pre-trained deep learning models. In: International Confer-
ence on Medical Image Computing and Computer-Assisted Intervention, 9351.

Springer, pp. 652–660 . 

han, H.-P. , Lo, S.-C. B. , Sahiner, B. , Lam, K.L. , Helvie, M.A. , 1995. Computer-aided
detection of mammographic microcalcifications: pattern recognition with an ar-

tificial neural network. Med. Phys. 22 (10), 1555–1567 . 
hen, H. , Dou, Q. , Wang, X. , Qin, J. , Heng, P.-A. , 2016. Mitosis detection in breast can-

cer histology images via deep cascaded networks. In: Proceedings of the Thirti-
eth AAAI Conference on Artificial Intelligence. AAAI Press, pp. 1160–1166 . 

hen, H. , Wang, X. , Heng, P.A. , 2016. Automated mitosis detection with deep regres-

sion networks. In: 13th IEEE International Symposium on Biomedical Imaging
(ISBI). IEEE, pp. 1204–1207 . 

heng, H.-D. , Cai, X. , Chen, X. , Hu, L. , Lou, X. , 2003. Computer-aided detection and
classification of microcalcifications in mammograms: a survey. Pattern Recognit.

36 (12), 2967–2991 . 
ire ̧s an, D. , Giusti, A. , Gambardella, L.M. , Schmidhuber, J. , 2012. Deep neural net-

works segment neuronal membranes in electron microscopy images. In: Ad-

vances in Neural Information Processing Systems, pp. 2843–2851 . 
ire ̧s an, D. , Meier, U. , Schmidhuber, J. , 2012. Multi-column deep neural networks

for image classification. In: IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 3642–3649 . 

ire ̧s an, D.C. , Giusti, A. , Gambardella, L.M. , Schmidhuber, J. , 2013. Mitosis detection
in breast cancer histology images with deep neural networks. In: International

Conference on Medical Image Computing and Computer-Assisted Intervention,

8150. Springer, pp. 411–418 . 
lark, K. , Vendt, B. , Smith, K. , Freymann, J. , Kirby, J. , Koppel, P. , Moore, S. , Phillips, S. ,

Maffitt, D. , Pringle, M. , Lawrence, T. , Prior, F. , 2013. The cancer imaging archive
(TCIA): maintaining and operating a public information repository. J. Digit.

Imaging 26 (6), 1045–1057 . 
ruz-Roa, A., Basavanhally, A., González, F., Gilmore, H., Feldman, M., Ganesan, S.,

Shih, N., Tomaszewski, J., Madabhushi, A., 2014. Automatic detection of inva-
sive ductal carcinoma in whole slide images with convolutional neural net-

works. SPIE Medical Imaging, 9041. International Society for Optics and Pho-

tonics doi: 10.1117/12.2043872 . 
UDA, 2017. What is CUDA?. URL: http://www.nvidia.com/object/cuda _ home _ new.

html . 
ahl, G.E. , Sainath, T.N. , Hinton, G.E. , 2013. Improving deep neural networks for

LVCSR using rectified linear units and dropout. In: 2013 IEEE International Con-
ference on Acoustics, Speech and Signal Processing, pp. 8609–8613 . 

eng, J. , Dong, W. , Socher, R. , Li, L.-J. , Li, K. , Fei-Fei, L. , 2009. ImageNet: a large-s-

cale hierarchical image database. In: IEEE Conference on Computer Vision and
Pattern Recognition, CVPR, pp. 248–255 . 

hungel, N., Carneiro, G., Bradley, A.P., 2015. Automated mass detection in mammo-
grams using cascaded deep learning and random forests. In: IEEE International

Conference on Digital Image Computing: Techniques and Applications (DICTA),
pp. 1–8. doi: 10.1109/DICTA.2015.7371234 . 

hungel, N. , Carneiro, G. , Bradley, A.P. , 2016. The automated learning of deep fea-

tures for breast mass classification from mammograms. In: International Confer-
ence on Medical Image Computing and Computer-Assisted Intervention, 9901.

Springer, pp. 106–114 . 
igital-Mammography-DREAM-Challenge, 2017. 1.2M USD crowdsourced contest 

aims to improve breast-cancer detection through deep machine learning. URL:
https://www.synapse.org/#!Synapse:syn4224222/wiki/401743 

oi, K. , 2007. Computer-aided diagnosis in medical imaging: historical review, cur-

rent status and future potential. Comput. Med. Imaging Graph. 31 (4), 198–211 . 
onahue, J. , Jia, Y. , Vinyals, O. , Hoffman, J. , Zhang, N. , Tzeng, E. , Darrell, T. , 2014.

DeCAF: a deep convolutional activation feature for generic visual recognition.
In: International Conference on Machine Learning (ICML), pp. 647–655 . 

’Orsi, C.J. , 2013. ACR BI-RADS Atlas: Breast Imaging Reporting And Data System.
American College of Radiology . 

os Santos, C. , Marshall, P. , Torresan, R. , Tinóis, E. , Duarte, G. , Teixeira, S. , 2016.

Abstract p4-01-04: immunohistochemical and histological features of mammo-
graphic dense and non-dense tissue in breast cancer patients. Cancer Res. 76 (4

Supplement), P4–01 . 

http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0001
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0001
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0001
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0001
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0001
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0001
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0001
http://www.cancer.org/cancer/breastcancer/detailedguide/breast-cancer-key-statistics
http://amida13.isi.uu.nl
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0003
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0003
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0003
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0003
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0003
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0003
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0004
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0004
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0004
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0004
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0004
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0004
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0005
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0005
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0005
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0005
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0005
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0005
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0005
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0005
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0005
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0005
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0005
http://arxiv.org/abs/1702.05803
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0006
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0006
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0006
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0006
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0007
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0007
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0008
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0008
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0008
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0009
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0009
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0009
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0009
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0009
https://doi.org/10.1093/jnci/djq239
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0011
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0011
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0011
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0011
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0011
http://www.breastcancer.org/symptoms/testing/types/biopsy
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0012
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0012
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0012
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0012
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0012
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0012
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0013
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0013
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0013
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0013
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0013
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0013
https://camelyon16.grand-challenge.org
https://camelyon17.grand-challenge.org
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0014
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0014
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0014
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0014
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0015
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0015
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0015
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0015
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0015
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0015
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0016
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0016
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0016
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0016
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0016
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0016
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0017
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0017
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0017
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0017
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0018
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0018
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0018
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0018
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0018
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0018
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0019
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0019
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0019
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0019
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0019
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0020
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0020
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0020
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0020
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0021
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0021
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0021
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0021
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0021
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0022
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0022
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0022
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0022
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0022
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0022
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0022
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0022
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0022
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0022
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0022
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0022
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0022
https://doi.org/10.1117/12.2043872
http://www.nvidia.com/object/cuda_home_new.html
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0024
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0024
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0024
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0024
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0025
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0025
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0025
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0025
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0025
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0025
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0025
https://doi.org/10.1109/DICTA.2015.7371234
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0027
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0027
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0027
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0027
https://www.synapse.org/#!Synapse:syn4224222/wiki/401743
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0028
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0028
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0029
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0029
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0029
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0029
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0029
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0029
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0029
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0029
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0030
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0030
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0031
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0031
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0031
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0031
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0031
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0031
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0031


66 A. Hamidinekoo et al. / Medical Image Analysis 47 (2018) 45–67 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

J  

 

 

 

K  

 

 

 

K  

 

 

K  

 

K  

 

K  

K  

 

L  

 

 

 

 

L

L  

L  

 

L  

 

 

L  

 

 

 

 

L  

 

 

M  

 

 

M  

 

M  

M  

 

M  

 

M  

 

N  

 

N  

N  

 

Dubrovina, A. , Kisilev, P. , Ginsburg, B. , Hashoul, S. , Kimmel, R. , 2016. Computational
mammography using deep neural networks. Comput. Methods Biomech.Biomed.

Eng. 1–5 . 
Dundar, M.M. , Badve, S. , Bilgin, G. , Raykar, V. , Jain, R. , Sertel, O. , Gurcan, M.N. , 2011.

Computerized classification of intraductal breast lesions using histopathological
images. IEEE Trans. Biomed.Eng. 58 (7), 1977–1984 . 

Elmore, J.G. , Jackson, S.L. , Abraham, L. , Miglioretti, D.L. , Carney, P.A. , Geller, B.M. ,
Yankaskas, B.C. , Kerlikowske, K. , Onega, T. , Rosenberg, R.D. , Sickles, E.A. ,

Buist, D.S.M. , 2009. Variability in interpretive performance at screening mam-

mography and radiologists characteristics associated with accuracy. Radiology
253 (3), 641–651 . 

Elston, C.W. , Ellis, I. , 1991. Pathological prognostic factors in breast cancer. I. The
value of histological grade in breast cancer: experience from a large study with

long-term follow-up. Histopathology 19 (5), 403–410 . 
Fenton, J.J. , Abraham, L. , Taplin, S.H. , Geller, B.M. , Carney, P.A. , D’Orsi, C. , Elmore, J.G. ,

Barlow, W.E. , Consortium, B.C.S. , 2011. Effectiveness of computer-aided detection

in community mammography practice. J. Natl. Cancer Inst. 103 (15), 1152–1161 .
Fonseca, P., Mendoza, J., Wainer, J., Ferrer, J., Pinto, J., Guerrero, J., Castaneda, B.,

2015. Automatic breast density classification using a convolutional neural net-
work architecture search procedure. SPIE Medical Imaging, 9414 doi: 10.1117/12.

2081576 . 
Fotin, S.V. , Yin, Y. , Haldankar, H. , Hoffmeister, J.W. , Periaswamy, S. , 2016. Detection of

soft tissue densities from digital breast tomosynthesis: comparison of conven-

tional and deep learning approaches. SPIE Medical Imaging, 9785. International
Society for Optics and Photonics . 

Gastounioti, A. , Conant, E.F. , Kontos, D. , 2016. Beyond breast density: a review on the
advancing role of parenchymal texture analysis in breast cancer risk assessment.

Breast Cancer Res. 18 (1), 91–103 . 
Ghosh, K. , Brandt, K.R. , Reynolds, C. , Scott, C.G. , Pankratz, V. , Riehle, D.L. , Lin-

gle, W.L. , Odogwu, T. , Radisky, D.C. , Visscher, D.W. , Ingle, J.N. , Hartmann, L.C. ,

Vachon, C.M. , 2012. Tissue composition of mammographically dense and non–
dense breast tissue. Breast Cancer Res. Treat. 131 (1), 267–275 . 

Giger, M.L. , 2014. Medical imaging and computers in the diagnosis of breast cancer.
SPIE, Photonic Innovations and Solutions for Complex Environments and Sys-

tems (PISCES) II, 918908. International Society for Optics and Photonics . 
Giger, M.L. , Karssemeijer, N. , Schnabel, J.A. , 2013. Breast image analysis for risk as-

sessment, detection, diagnosis, and treatment of cancer. Annu. Rev. Biomed. Eng.

15, 327–357 . 
Giusti, A. , Caccia, C. , Cire ̧s ari, D.C. , Schmidhuber, J. , Gambardella, L.M. , 2014. A com-

parison of algorithms and humans for mitosis detection. In: IEEE 11th Interna-
tional Symposium on Biomedical Imaging (ISBI). IEEE, pp. 1360–1363 . 

Glorot, X. , Bordes, A. , Bengio, Y. , 2011. Deep sparse rectifier neural networks. In: 14th
International Conference on Artificial Intelligence and Statistics, 15, pp. 315–323 .

Goodfellow, I. , Bengio, Y. , Courville, A. , 2016. Deep Learning. MIT Press . 

Greenspan, H. , van Ginneken, B. , Summers, R.M. , 2016. Guest editorial deep learning
in medical imaging: Overview and future promise of an exciting new technique.

IEEE Trans. Med. Imaging 35 (5), 1153–1159 . 
Gurcan, M.N. , Boucheron, L.E. , Can, A. , Madabhushi, A. , Rajpoot, N.M. , Yener, B. ,

2009. Histopathological image analysis: a review. IEEE Rev. Biomed. Eng. 2,
147–171 . 

Hamidinekoo, A. , Suhail, Z. , Qaiser, T. , Zwiggelaar, R. , 2017. Investigating the effect of
various augmentations on the input data fed to a convolutional neural network

for the task of mammographic mass classification. In: Annual Conference on

Medical Image Understanding and Analysis. Springer, pp. 398–409 . 
He, W. , Juette, A. , Denton, E.R. , Oliver, A. , Martí, R. , Zwiggelaar, R. , 2015. A review on

automatic mammographic density and parenchymal segmentation. Int. J. Breast
Cancer 2015, 276217 . 

Heath, M. , Bowyer, K. , Kopans, D. , Moore, R. , Kegelmeyer, W.P. , 2001. The digital
database for screening mammography. In: Proceedings of the 5th International

Workshop on Digital Mammography. Medical Physics Publishing, pp. 212–218 . 

Holland, R. , Hendriks, J. , 1994. Microcalcifications associated with ductal carci-
noma in situ: mammographic-pathologic correlation. In: Seminars in Diagnostic

Pathology, 11, pp. 181–192 . 
Huynh, B.Q., Li, H., Giger, M.L., 2016. Digital mammographic tumor classification us-

ing transfer learning from deep convolutional neural networks. J. Med. Imaging
3 (3), 034501. doi: 10.1117/1.JMI.3.3.034501 . 

ICPR2012, 2017. Contest. In: International Conference on Pattern Recognition.

Tsukuba, Japan. URL: http://www.icpr2012.org/contests.html . 
Irshad, H. , Veillard, A. , Roux, L. , Racoceanu, D. , 2014. Methods for nuclei detection,

segmentation, and classification in digital histopathology: a review- current sta-
tus and future potential. IEEE Rev. Biomed. Eng. 7, 97–114 . 

Jamieson, A.R., Drukker, K., Giger, M.L., 2012. Breast image feature learning with
adaptive deconvolutional networks. SPIE Medical Imaging, 8315 doi: 10.1117/12.

910710 . 

Janowczyk, A. , Basavanhally, A. , Madabhushi, A. , 2017. Stain normalization using
sparse autoencoders (StaNoSA): application to digital pathology. Comput. Med.

Imaging Graph. 57, 50–61 . 
Janowczyk, A. , Doyle, S. , Gilmore, H. , Madabhushi, A. , 2016. A resolution adaptive

deep hierarchical (RADHicaL) learning scheme applied to nuclear segmentation
of digital pathology images. Comput. Methods Biomech. Biomed. Eng. 1–7 . 

Janowczyk, A ., Madabhushi, A ., 2016. Deep learning for digital pathology image

analysis: acomprehensive tutorial with selected use cases. Journal of Pathology
Informatics. Medknow Publications doi: 10.4103/2153-3539.186902 . 

Jia, Y. , Shelhamer, E. , Donahue, J. , Karayev, S. , Long, J. , Girshick, R. , Guadarrama, S. ,
Darrell, T. , 2014. Caffe: convolutional architecture for fast feature embedding.
In: Proceedings of the 22nd ACM International Conference on Multimedia. ACM,
pp. 675–678 . 

iao, Z. , Gao, X. , Wang, Y. , Li, J. , 2016. A deep feature based framework for breast
masses classification. Neurocomputing 197, 221–231 . 

Kallenberg, M. , Petersen, K. , Nielsen, M. , Ng, A.Y. , Diao, P. , Igel, C. , Vachon, C.M. ,
Holland, K. , Winkel, R.R. , Karssemeijer, N. , 2016. Unsupervised deep learning

applied to breast density segmentation and mammographic risk scoring. IEEE
Trans. Med.Imaging 35 (5), 1322–1331 . 

ooi, T. , Gubern-Merida, A. , Mordang, J.-J. , Mann, R. , Pijnappel, R. , Schuur, K. , den

Heeten, A. , Karssemeijer, N. , 2016. A comparison between a deep convolutional
neural network and radiologists for classifying regions of interest in mammog-

raphy. In: International Workshop on Digital Mammography, 9699. Springer,
pp. 51–56 . 

ooi, T. , Litjens, G. , van Ginneken, B. , Gubern-Mérida, A. , Sánchez, C.I. , Mann, R. , den
Heeten, A. , Karssemeijer, N. , 2017. Large scale deep learning for computer aided

detection of mammographic lesions. Med. Image Anal. 35, 303–312 . 

Kopans, D.B. , 1992. The positive predictive value of mammography. Am. J.
Roentgenol. 158 (3), 521–526 . 

othari, S. , Phan, J.H. , Stokes, T.H. , Wang, M.D. , 2013. Pathology imaging informatics
for quantitative analysis of whole-slide images. . Amer. Med. Inform.Assoc. 20

(6), 1099–1108 . 
owal, M. , Filipczuk, P. , Obuchowicz, A. , Korbicz, J. , Monczak, R. , 2013. Comput-

er-aided diagnosis of breast cancer based on fine needle biopsy microscopic

images. Comput. Biol. Med. 43 (10), 1563–1572 . 
rizhevsky, A., Hinton, G., 2009. Learning multiple layers of features from tiny im-

ages. 
rizhevsky, A. , Sutskever, I. , Hinton, G.E. , 2012. ImageNet classification with deep

convolutional neural networks. In: Advances in Neural Information Processing
Systems, pp. 1097–1105 . 

amb, P.M. , Perry, N.M. , Vinnicombe, S.J. , Wells, C.A. , 20 0 0. Correlation between ul-

trasound characteristics, mammographic findings and histological grade in pa-
tients with invasive ductal carcinoma of the breast. Clin. Radiol. 55 (1), 40–44 . 

Lazebnik, S. , Schmid, C. , Ponce, J. , 2006. Beyond bags of features: Spatial pyra-
mid matching for recognizing natural scene categories. In: IEEE Computer

Society Conference on Computer Vision and Pattern Recognition (CVPR), 2,
pp. 2169–2178 . 

eCun, Y. , Bengio, Y. , Hinton, G. , 2015. Deep learning. Nature 521 (7553), 436–4 4 4 . 

eCun, Y. , Bottou, L. , Bengio, Y. , Haffner, P. , 1998. Gradient-based learning applied to
document recognition. Proc. IEEE 86 (11), 2278–2324 . 

eCun, Y. , Kavukcuoglu, K. , Farabet, C. , 2010. Convolutional networks and applica-
tions in vision. In: Proceedings of IEEE International Symposium on Circuits and

Systems (ISCAS)„ pp. 253–256 . 
eCun, Y.A. , Bottou, L. , Orr, G.B. , Müller, K.-R. , 2012. Efficient BackProp. In: Neural

Networks: Tricks of the Trade. Springer, pp. 9–48 . 

Lévy, D., Jain, A., 2016. Breast mass classification from mammograms using deep
convolutional neural networks. Computing Research Repository arXiv:1612.

00542 . arXiv.org . 
itjens, G. , Kooi, T. , Bejnordi, B.E. , Setio, A .A .A . , Ciompi, F. , Ghafoorian, M. , van der

Laak, J.A. , van Ginneken, B. , Sánchez, C.I. , 2017. A survey on deep learning in
medical image analysis. Med. Image Anal. 42 (Supplement C), 60–88 . 

Litjens, G., Sánchez, C.I., Timofeeva, N., Hermsen, M., Nagtegaal, I., Kovacs, I.,
Hulsbergen-van de Kaa, C., Bult, P., van Ginneken, B., van der Laak, J., 2016. Deep

learning as a tool for increased accuracy and efficiency of histopathological di-

agnosis. Sci. Rep. 6, 26286. doi: 10.1038/srep26286 . 
opez, M.G. , Posada, N. , Moura, D.C. , Pollán, R.R. , Valiente, J.M.F. , Ortega, C.S. , So-

lar, M. , Diaz-Herrero, G. , Ramos, I. , Loureiro, J. , Fernandes, T.C. , Ferreira de
Araujo, B.M. , 2012. BCDR: a breast cancer digital repository. In: 15th Interna-

tional Conference on Experimental Mechanics . 
adabhushi, A. , Lee, G. , 2016. Image analysis and machine learning in digital

pathology: challenges and opportunities. Med. Image Anal. 33, 170–175 . 

Malon, C.D., Cosatto, E., 2013. Classification of mitotic figures with convolutional
neural networks and seeded blob features. .Pathol. Inform. 4 (1), 9. doi: 10.4103/

2153-3539.112694 . 
atheus, B.R.N. , Schiabel, H. , 2011. Online mammographic images database for de-

velopment and comparison of cad schemes. J.Digit. Imaging 24 (3), 500–506 . 
Medsker, L. , Jain, L.C. , 1999. Recurrent Neural Networks, Design and Applications.

CRC Press . 

IT-Technology-Review, 2017. 10 Breakthrough Technologies in 2013. URL: https:
//www.technologyreview.com/lists/technologies/2013/ . 

ITOS-ATYPIA-14, 2016. Detection of mitosis and evaluation of nuclear atypia score
in breast cancer histological images. In: The International Conference for Pattern

Recognition (ICPR). URL: https://mitos- atypia- 14.grand- challenge.org/ . 
oreira, I.C. , Amaral, I. , Domingues, I. , Cardoso, A. , Cardoso, M.J. , Cardoso, J.S. , 2012.

INbreast: toward a full-field digital mammographic database. Acad. Radiol. 19

(2), 236–248 . 
uhimmah, I. , Oliver, A. , Denton, E.R. , Pont, J. , Pérez, E. , Zwiggelaar, R. , 2006. Com-

parison between Wolfe, Boyd, BI-RADS and Tabár based mammographic risk as-
sessment. Lect. Notes Comput. Sci. 4046, 407 . 

air, V. , Hinton, G.E. , 2010. Rectified linear units improve Restricted Boltzmann Ma-
chines. In: Proceedings of the 27th International Conference on Machine Learn-

ing (ICML-10), pp. 807–814 . 

ational-Health-Service, 2016. Breast screening: professional guidance. URL: https://
www.gov.uk/government/collections/breast-screening-professional-guidance . 

eal, L. , Tortorelli, C.L. , Nassar, A. , 2010. Clinician’s guide to imaging and pathologic
findings in benign breast disease. In: Mayo Clinic Proceedings, 85, pp. 274–279 .

http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0032
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0032
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0032
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0032
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0032
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0032
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0033
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0033
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0033
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0033
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0033
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0033
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0033
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0033
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0034
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0034
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0034
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0034
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0034
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0034
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0034
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0034
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0034
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0034
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0034
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0034
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0034
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0035
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0035
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0035
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0036
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0036
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0036
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0036
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0036
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0036
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0036
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0036
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0036
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0036
https://doi.org/10.1117/12.2081576
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0038
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0038
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0038
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0038
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0038
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0038
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0039
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0039
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0039
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0039
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0040
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0040
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0040
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0040
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0040
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0040
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0040
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0040
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0040
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0040
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0040
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0040
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0040
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0040
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0041
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0041
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0042
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0042
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0042
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0042
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0043
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0043
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0043
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0043
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0043
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0043
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0044
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0044
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0044
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0044
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0045
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0045
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0045
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0045
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0046
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0046
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0046
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0046
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0047
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0047
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0047
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0047
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0047
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0047
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0047
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0048
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0048
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0048
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0048
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0048
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0049
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0049
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0049
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0049
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0049
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0049
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0049
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0050
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0050
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0050
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0050
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0050
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0050
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0051
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0051
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0051
https://doi.org/10.1117/1.JMI.3.3.034501
http://www.icpr2012.org/contests.html
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0054
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0054
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0054
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0054
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0054
https://doi.org/10.1117/12.910710
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0056
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0056
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0056
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0056
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0057
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0057
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0057
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0057
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0057
https://doi.org/10.4103/2153-3539.186902
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0059
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0059
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0059
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0059
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0059
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0059
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0059
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0059
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0059
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0059
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0060
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0060
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0060
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0060
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0060
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0061
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0061
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0061
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0061
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0061
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0061
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0061
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0061
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0061
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0061
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0061
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0062
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0062
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0062
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0062
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0062
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0062
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0062
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0062
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0062
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0063
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0063
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0063
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0063
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0063
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0063
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0063
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0063
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0063
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0064
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0064
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0065
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0065
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0065
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0065
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0065
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0066
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0066
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0066
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0066
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0066
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0066
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0067
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0067
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0067
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0067
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0068
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0068
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0068
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0068
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0068
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0069
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0069
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0069
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0069
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0070
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0070
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0070
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0070
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0071
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0071
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0071
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0071
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0071
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0072
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0072
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0072
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0072
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0073
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0073
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0073
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0073
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0073
http://arxiv.org/abs/1612.00542
https://arXiv.org
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0075
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0075
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0075
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0075
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0075
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0075
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0075
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0075
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0075
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0075
https://doi.org/10.1038/srep26286
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0077
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0077
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0077
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0077
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0077
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0077
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0077
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0077
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0077
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0077
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0077
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0077
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0077
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0078
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0078
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0078
https://doi.org/10.4103/2153-3539.112694
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0080
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0080
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0080
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0081
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0081
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0081
https://www.technologyreview.com/lists/technologies/2013/
https://mitos-atypia-14.grand-challenge.org/
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0083
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0083
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0083
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0083
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0083
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0083
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0083
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0084
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0084
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0084
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0084
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0084
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0084
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0084
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0085
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0085
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0085
https://www.gov.uk/government/collections/breast-screening-professional-guidance
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0086
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0086
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0086
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0086


A. Hamidinekoo et al. / Medical Image Analysis 47 (2018) 45–67 67 

N  

O  

 

O  

 

 

O  

P  

 

 

P  

 

P  

 

R  

 

R  

 

R  

 

 

S  

 

 

S  

 

S  

 

S  

 

 

S  

S  

 

 

S  

 

 

S  

 

S  

 

S  

 

S  

S  

 

 

S  

 

S  

 

 

S  

 

 

T  

T  

 

T  

 

T  

U  

V  

V  

 

V  

 

V  

 

 

V  

V  

 

 

 

 

 

W  

W  

 

 

 

W  

 

 

W  

 

W  

X  

 

 

X  

X  

 

X  

 

 

X  

 

Z  

 

g, A. , 2011. Sparse autoencoder. In: CS294A Lecture Notes, 72. Stanford University,
pp. 1–19 . 

liver, A. , Freixenet, J. , Marti, J. , Pérez, E. , Pont, J. , Denton, E.R. , Zwiggelaar, R. , 2010.
A review of automatic mass detection and segmentation in mammographic im-

ages. Med. Image Anal. 14 (2), 87–110 . 
liver, A. , Freixenet, J. , Martí, R. , Zwiggelaar, R. , 2006. A comparison of breast tissue

classification techniques. In: International Conference on Medical Image Com-
puting and Computer-Assisted Intervention MICCAI, 4191. Springer, pp. 872–879 .

penCL, 2017. The open standard for parallel programming of heterogeneous sys-

tems. URL: www.khronos.org/opencl . 
ang, J.-M. B. , Byrne, D.J. , Takano, E.A. , Jene, N. , Petelin, L. , McKinley, J. , Poliness, C. ,

Saunders, C. , Taylor, D. , Mitchell, G. , Fox, S.B. , 2015. Breast tissue composition
and immunophenotype and its relationship with mammographic density in

women at high risk of breast cancer. PloS One 10 (6), e0128861 . 
etersen, K. , Chernoff, K. , Nielsen, M. , Ng, A.Y. , 2012. Breast density scoring with

multiscale denoising autoencoders. Sparse Methods for Signal Reconstruction

and Medical Image Analysis Workshop at MICCAI . 
into, N. , Doukhan, D. , DiCarlo, J.J. , Cox, D.D. , 2009. A high-throughput screening ap-

proach to discovering good forms of biologically inspired visual representation.
PLoS Comput. Biol. 5 (11), e10 0 0579 . 

angayyan, R.M. , Ayres, F.J. , Desautels, J.L. , 2007. A review of computer-aided diag-
nosis of breast cancer: toward the detection of subtle signs. J. Frankl. Inst. 344

(3), 312–348 . 

anzato, M. , Poultney, C. , Chopra, S. , Cun, Y.L. , 2006. Efficient learning of sparse rep-
resentations with an energy-based model. In: Advances in Neural Information

Processing Systems, pp. 1137–1144 . 
omo-Bucheli, D. , Janowczyk, A. , Romero, E. , Gilmore, H. , Madabhushi, A. , 2016. Au-

tomated tubule nuclei quantification and correlation with oncotype DX risk cat-
egories in ER + breast cancer whole slide images. SPIE Medical Imaging. Inter-

national Society for Optics and Photonics . 979106–979106 

ahiner, B. , Chan, H.-P. , Petrick, N. , Wei, D. , Helvie, M.A. , Adler, D.D. , Goodsitt, M.M. ,
1996. Classification of mass and normal breast tissue: a convolution neural net-

work classifier with spatial domain and texture images. IEEE Trans. Med. Imag-
ing 15 (5), 598–610 . 

alakhutdinov, R. , Hinton, G.E. , 2009. Deep Boltzmann Machines. In: in Proc. of The
Twelfth International Conference on Artificial Intelligence and Statistics (AIS-

TATS), 5, pp. 448–455 . 

amala, R.K. , Chan, H.-P. , Hadjiiski, L. , Helvie, M.A. , Wei, J. , Cha, K. , 2016. Mass de-
tection in digital breast tomosynthesis: deep convolutional neural network with

transfer learning from mammography. Med. Phys. 43 (12), 6654–6666 . 
amala, R.K., Chan, H.-P., Hadjiiski, L.M., Cha, K., Helvie, M.A., 2016. Deep-learning

convolution neural network for computer-aided detection of microcalcifications
in digital breast tomosynthesis. In: SPIE Medical Imaging 9785, 9785. Interna-

tional Society for Optics and Photonics, pp. 1–7. doi: 10.1117/12.2217092 . 

chmidhuber, J. , 2015. Deep learning in neural networks: an overview. Neural Netw.
61, 85–117 . 

hin, H.-C. , Lu, L. , Kim, L. , Seff, A. , Yao, J. , Summers, R.M. , 2015. Interleaved
text/image deep mining on a very large-scale radiology database. In: Pro-

ceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 1090–1099 . 

hin, H.-C. , Roth, H.R. , Gao, M. , Lu, L. , Xu, Z. , Nogues, I. , Yao, J. , Mollura, D. , Sum-
mers, R.M. , 2016. Deep convolutional neural networks for computer-aided de-

tection: CNN architectures, dataset characteristics and transfer learning. IEEE

Trans. Med. Imaging 35 (5), 1285–1298 . 
imonyan, K. , Zisserman, A. , 2014. Very deep convolutional networks for large-s-

cale image recognition. In: International Conference on Learning Representa-
tions . arXiv preprint 

rivastava, N. , Hinton, G.E. , Krizhevsky, A. , Sutskever, I. , Salakhutdinov, R. , 2014.
Dropout: a simple way to prevent neural networks from overfitting. J.Mach.

Learn. Res. 15 (1), 1929–1958 . 

tavros, A.T. , Thickman, D. , Rapp, C.L. , Dennis, M.A. , Parker, S.H. , Sisney, G.A. , 1995.
Solid breast nodules: use of sonography to distinguish between benign and ma-

lignant lesions. Radiology 196 (1), 123–134 . 
tewart, B.W. , Kleihues, P. , 2014. World Cancer Report. IARC Press, International

Agency for Research on Cancer, WHO, Lyon, France . 
uckling, J., Parker, J., Dance, D., Astley, S., Hutt, I., Boggis, C., Ricketts, I., Sta-

matakis, E., Cerneaz, N., Kok, S., et al., 2015. Mammographic Image Analysis

Society (MIAS) database v1. 21. URL: https://www.repository.cam.ac.uk/handle/
1810/250394 . 

un, W. , Tseng, T.-L. B. , Zhang, J. , Qian, W. , 2016. Enhancing deep convolutional neu-
ral network scheme for breast cancer diagnosis with unlabeled data. Comput.

Med. Imaging Graph. . 
un, X. , Sandhu, R. , Figueroa, J.D. , Gierach, G.L. , Sherman, M.E. , Troester, M.A. , 2014.

Benign breast tissue composition in breast cancer patients: association with risk

factors, clinical variables, and gene expression. Cancer Epidemiol. Biomark.Prev.
23 (12), 2810–2818 . 
zegedy, C. , Liu, W. , Jia, Y. , Sermanet, P. , Reed, S. , Anguelov, D. , Erhan, D. , Van-
houcke, V. , Rabinovich, A. , 2015. Going deeper with convolutions. In: Pro-

ceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 1–9 . 

abár, L. , Dean, P.B. , 2005. Breast Cancer-The Art and Science of Early Detection with
Mammography. New York: Thieme, ISBN: 3-13-131 371-6 . 

ajbakhsh, N. , Shin, J.Y. , Gurudu, S.R. , Hurst, R.T. , Kendall, C.B. , Gotway, M.B. , Liang, J. ,
2016. Convolutional neural networks for medical image analysis: Full training or

fine tuning? IEEE Trans. Med. Imaging 35 (5), 1299–1312 . 

ot, T. , Tabár, L. , 2011. The role of radiological–pathological correlation in diagnos-
ing early breast cancer: the pathologists perspective. Virchows Arch. 458 (2),

125–131 . 
UPAC16, 2016. Tumor Proliferation Assessment Challenge. URL: http://tupac.

tue-image.nl . 
K-Breast-Cancer, 2016. UK Breast Cancer Research Symposium URL: http://

breastcancerconference.org . 

an Diest, P. , Van Der Wall, E. , Baak, J. , 2004. Prognostic value of proliferation in
invasive breast cancer: a review. . Clin. Pathol. 57 (7), 675–681 . 

eillard, A. , Kulikova, M.S. , Racoceanu, D. , 2013. Cell nuclei extraction from breast
cancer histopathologyimages using colour, texture, scale and shape information.

Diagn. Pathol. 8 (1), 1–3 . 
eta, M., van Diest, P.J., Jiwa, M., Al-Janabi, S., Pluim, J.P., 2016. Mitosis counting in

breast cancer: object-level interobserver agreement and comparison to an auto-

matic method. PloS One 11 (8), e0161286. doi: 10.1371/journal.pone.0161286 . 
eta, M. , van Diest, P.J. , Pluim, J.P. , 2016. Cutting out the middleman: measuring

nuclear area in histopathology slides without segmentation. In: International
Conference on Medical Image Computing and Computer-Assisted Intervention,

9901. Springer, pp. 632–639 . 
eta, M. , Pluim, J.P. , van Diest, P.J. , Viergever, M.A. , 2014. Breast cancer histopathol-

ogy image analysis: a review. IEEE Trans. Biomed.Eng. 61 (5), 1400–1411 . 

eta, M. , Van Diest, P.J. , Willems, S.M. , Wang, H. , Madabhushi, A. , Cruz-Roa, A. , Gon-
zalez, F. , Larsen, A.B. , Vestergaard, J.S. , Dahl, A.B. , Cire ̧s an, D.C. , Schmidhuber, J. ,

Giusti, A. , Gambardella, L.M. , Tek, F.B. , Walter, T. , Wang, C.-W. , Kondo, S. , Ma-
tuszewski, B.J. , Precioso, F. , Snell, V. , Kittler, J. , de Campos, T.E. , Khan, A.M. , Ra-

jpoot, N.M. , Arkoumani, E. , Lacle, M.M. , Viergever, M.A. , Pluim, J.P. , 2015. As-
sessment of algorithms for mitosis detection in breast cancer histopathology

images. Med. Image Anal. 20 (1), 237–248 . 

ang, D., Khosla, A., Gargeya, R., Irshad, H., Beck, A. H., 2016a. Deep learning for
identifying metastatic breast cancer. arXiv preprint, arXiv:1606.05718 . 

ang, H., Cruz-Roa, A., Basavanhally, A., Gilmore, H., Shih, N., Feldman, M.,
Tomaszewski, J., Gonzalez, F., Madabhushi, A., 2014. Cascaded ensemble of con-

volutional neural networks and handcrafted features for mitosis detection. In:
SPIE Medical Imaging, 9041. International Society for Optics and Photonics,

p. 90410B. doi: 10.1117/12.2043902 . 

ang, H., Cruz-Roa, A., Basavanhally, A., Gilmore, H., Shih, N., Feldman, M.,
Tomaszewski, J., Gonzalez, F., Madabhushi, A., 2014. Mitosis detection in breast

cancer pathology images by combining handcrafted and convolutional neural
network features. J. Med. Imaging 1 (3), 034003. doi: 10.1117/1.JMI.1.3.034003 . 

ang, J. , Yang, X. , Cai, H. , Tan, W. , Jin, C. , Li, L. , 2016. Discrimination of breast can-
cer with microcalcifications on mammography by deep learning. Scient. Rep. 6,

27327 . 
olfe, J.N. , 1976. Breast patterns as an index of risk for developing breast cancer.

Am. J.Roentgenol. 126 (6), 1130–1137 . 

ie, Y. , Xing, F. , Kong, X. , Su, H. , Yang, L. , 2015. Beyond classification: structured
regression for robust cell detection using convolutional neural network. In: In-

ternational Conference on Medical Image Computing and Computer-Assisted In-
tervention, 9351. Springer, pp. 358–365 . 

ing, F. , Xie, Y. , Yang, L. , 2016. An automatic learning-based framework for robust
nucleus segmentation. IEEE Trans. Med. Imaging 35 (2), 550–566 . 

u, J. , Luo, X. , Wang, G. , Gilmore, H. , Madabhushi, A. , 2016. A deep convolutional

neural network for segmenting and classifying epithelial and stromal regions in
histopathological images. Neurocomputing 191, 214–223 . 

u, J. , Xiang, L. , Hang, R. , Wu, J. , 2014. Stacked sparse autoencoder (SSAE) based
framework for nuclei patch classification on breast cancer histopathology. In:

IEEE 11th International Symposium on Biomedical Imaging (ISBI), pp. 999–1002 .
u, J. , Xiang, L. , Liu, Q. , Gilmore, H. , Wu, J. , Tang, J. , Madabhushi, A. , 2016. Stacked

sparse autoencoder (SSAE) for nuclei detection on breast cancer histopathology

images. IEEE Trans. Med. Imaging 35 (1), 119–130 . 
eiler, M.D. , Taylor, G.W. , Fergus, R. , 2011. Adaptive deconvolutional networks for

mid and high level feature learning. In: IEEE International Conference on Com-
puter Vision, pp. 2018–2025 . 

http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0087
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0087
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0088
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0088
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0088
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0088
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0088
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0088
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0088
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0088
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0089
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0089
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0089
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0089
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0089
https://www.khronos.org/opencl
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0090
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0090
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0090
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0090
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0090
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0090
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0090
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0090
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0090
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0090
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0090
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0090
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0091
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0091
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0091
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0091
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0091
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0092
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0092
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0092
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0092
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0092
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0093
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0093
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0093
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0093
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0094
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0094
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0094
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0094
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0094
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0095
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0095
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0095
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0095
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0095
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0095
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0095
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0096
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0096
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0096
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0096
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0096
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0096
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0096
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0096
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0097
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0097
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0097
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0098
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0098
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0098
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0098
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0098
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0098
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0098
https://doi.org/10.1117/12.2217092
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0100
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0100
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0101
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0101
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0101
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0101
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0101
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0101
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0101
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0102
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0102
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0102
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0102
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0102
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0102
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0102
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0102
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0102
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0102
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0103
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0103
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0103
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0103
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0104
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0104
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0104
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0104
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0104
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0104
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0105
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0105
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0105
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0105
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0105
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0105
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0105
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0106
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0106
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0106
https://www.repository.cam.ac.uk/handle/1810/250394
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0107
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0107
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0107
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0107
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0107
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0108
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0108
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0108
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0108
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0108
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0108
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0108
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0109
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0109
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0109
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0109
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0109
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0109
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0109
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0109
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0109
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0109
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0110
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0110
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0110
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0111
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0111
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0111
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0111
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0111
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0111
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0111
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0111
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0112
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0112
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0112
http://tupac.tue-image.nl
http://breastcancerconference.org
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0114
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0114
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0114
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0114
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0115
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0115
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0115
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0115
https://doi.org/10.1371/journal.pone.0161286
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0117
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0117
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0117
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0117
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0118
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0118
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0118
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0118
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0118
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0119
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0119
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0119
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0119
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0119
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0119
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0119
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0119
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0119
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0119
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0119
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0119
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0119
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0119
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0119
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0119
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0119
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0119
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0119
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0119
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0119
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0119
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0119
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0119
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0119
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0119
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0119
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0119
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0119
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0119
http://arxiv.org/abs/1606.05718
https://doi.org/10.1117/12.2043902
https://doi.org/10.1117/1.JMI.1.3.034003
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0122
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0122
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0122
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0122
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0122
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0122
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0122
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0123
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0123
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0124
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0124
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0124
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0124
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0124
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0124
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0125
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0125
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0125
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0125
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0126
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0126
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0126
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0126
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0126
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0126
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0127
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0127
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0127
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0127
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0127
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0128
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0128
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0128
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0128
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0128
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0128
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0128
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0128
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0129
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0129
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0129
http://refhub.elsevier.com/S1361-8415(18)30090-2/sbref0129

	Deep learning in mammography and breast histology, an overview and future trends
	1 Introduction
	1.1 Breast cancer
	1.2 Conventional CAD systems
	1.3 Towards, deep learning based CAD systems
	1.4 Structure of the paper
	1.4.1 Paper selection process


	2 Deep Neural Networks
	2.1 General architecture of deep neural networks
	2.1.1 Input layer
	2.1.2 Convolutional layer
	2.1.3 Normalisation layer
	2.1.4 Dropout regularisation layer
	2.1.5 Inner-product layers or fully connected layers

	2.2 Convolutional Neural Networks (CNNs)
	2.3 AutoEncoder
	2.4 Developed models
	2.5 Common challenges and proposed strategies in deep learning

	3 Deep learning in mammographic image processing
	3.1 Problem statement
	3.2 Mass analysis
	3.3 Microcalcification analysis
	3.4 Summary

	4 Deep learning in breast histology image processing
	4.1 Problem statement
	4.2 Nuclei analysis
	4.3 Tubules analysis
	4.4 Epithelial and stromal region analysis
	4.5 Mitotic activity analysis
	4.6 Other tasks in breast digital histopathology image processing
	4.7 Summary

	5 Biological mammography histology association
	6 Conclusions and future trends
	6.1 Conclusions
	6.2 Mammography-Histology-Phenotype-Linking-Model
	6.3 Possible challenges
	6.4 Clinical relevance

	 References


